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OVERVIEW

Electrical networks, flocking birds, transportation hubs, weather patterns, 
commercial organisations, swarming robots... Increasingly, many of the 
systems that we want to engineer or understand are said to be ‘complex’. These 
systems are often considered to be intractable because of their unpredictability, 
non-linearity, interconnectivity, heterarchy and ‘emergence’. Such attributes are 
often framed as a problem, but can also be exploited to encourage systems to 
efficiently exhibit intelligent, robust, self-organising behaviours. But what does 
it mean to describe systems as complex? How do these complex systems differ 
from the more easily understood ‘modular’ systems that we are familiar with? 
What are the underlying similarities between different systems, whether modular 
or complex? Answering these questions is a first step in approaching the design 
and science of complexity. However, to do so, it is necessary to look beyond 
the specifics of any particular system or field of study. We need to consider the 
fundamental nature of systems, looking for a common way to view ostensibly 
different phenomena.

This primer introduces a domain-neutral framework and diagrammatic scheme 
for characterising the ways in which systems are modular or complex. Rather 
than seeing modularity and complexity as inherent attributes of systems, we 
instead see them as ways in which those systems are characterised by those 
who are interested in them. The framework is not tied to any established mode 
of representation (e.g. networks, equations, formal modelling languages) nor 
to any domain-specific terminology (e.g. ‘vertex’, ‘eigenvector’, ‘entropy’). 
Instead, it consists of basic system constructs and three fundamental attrib-
utes of modular system architecture, namely structural encapsulation, function- 
structure mapping and interfacing. These constructs and attributes encourage 
more precise descriptions of different aspects of complexity (e.g. emergence, 
self-organisation, heterarchy). This allows researchers and practitioners from 
different disciplines to share methods, theories and findings related to the 
design and study of different systems, even when those systems appear super-
ficially dissimilar.
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Cover image
Starlings flock around an electricity pylon in the small village of Rigg in the Scottish Borders. Tens 
of thousands of these birds collectively exhibit spectacular murmations but their interaction with 
the power lines also cause local outages. Two types of system are at play here: one biological, 
the other technical. Either of these systems can be seen to decompose into discrete ‘modules’ 
that have clear boundaries (birds, pylons) but they can also be seen to integrate into larger 
assemblages (flocks, networks). Interactions within and between the assemblages (and across 
systems) can result in unanticipated ‘emergence’ and other forms of ‘complex’ behaviour.  
(Image credit: Owen Humphreys/PA Images)
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Note that when we use the term ‘system’, what we really mean is a system char-
acterisation; we do not make any metaphysical claims about the decomposa-
bility of physical entities. In addition to defining subsystems, components and 
supersystems, with respect to a given system, we define an ‘environment’ of the 
system as a set of entities and relationships that are not in the set of entities and 
relationships constituting the system but that belong to a supersystem of the 
system. The difference between ‘the supersystem of s’ and ‘the environment of 
s’ is that the supersystem of s includes s, whereas the environment of s does not 
(see Figure 1). 

Entities can also be characterised at different levels of abstraction. Two elements 
can be seen to be different to each other at one level but the same as each other 
at another, more abstract level, where they belong to the same class or ‘type’. 
Classificatory relationships between characterisations determine which char-
acterisations can be treated as equivalent (see Figure 2).

We define a ‘type’ as a taxonomic group or ‘class’ associated with a set of 
subtypes and instances. With respect to a given system type, S,

• A subtype of S is a taxonomic group containing a subset of the entity types, 
entity instances and characterisations contained in the set defined by S.

• A supertype of S is a taxonomic group containing a superset of the entity types, 
entity instances and characterisations contained in the set defined by S.

• An instance of S is a concrete realisation of S (an entity in the world) which 
belongs to the set of entities defined by S.

2.1.2. Hierarchies and heterarchies
The terms ‘level’ and ‘hierarchy’ are frequently found in systems discourse. The 
part-whole (composition) and subtype-supertype (classification) relationships 
defined above give us a means of more precisely understanding these terms. 

Figure 1: In this diagrammatic scheme, 
there are different types of entity 
(represented by different shapes 
and interfaces). Here, C1, C2 and 
C3 represent component types and 
can be combined to make a system 
type SC1+C2+C3. System type SC1+C2 is 
a subsystem of SC1+C2+C3. Entity C3 
is a component of SC1+C2+C3 but is the 
environment of system SC1+C2 (assuming 
no other entities exist, otherwise it is just 
part of the environment). These basic 
aspects of composition apply both to 
types and instances of entities.

In a table lamp (SC1+C2+C3), C1 might 
refer to the base, C2 to the bulb, and 
C3 to the shade. Similarly, in a rainforest 
ecosystem (SC1+C2+C3), C1 might refer to 
the producers, C2 to the consumers, and 
C3 to the abiotic elements. The subsystem 
SC1+C2 might refer to the abiotic elements. 

Architectural characterisation. 
An architectural characterisation of 
the lamp system might refer to the way 
the lamp base, bulb and lampshade 
fit together. An architectural 
characterisation of the rainforest 
ecosystem might refer to the way the 
producers, consumers and abiotic 
elements interact with each other.

From modularity to emergence  |  3

1. In the main text, we describe 
systems (and the ways in which they 
can be understood) in abstract terms. 
The language is domain-neutral, 
allowing the text to relate to many 
different systems and the different 
disciplines that study them.

2. In the right-hand margins there 
are concrete examples relating 
to the abstract descriptions in the 
main text. Two systems are used 
throughout: a table lamp, which is 
generally considered to be ‘non-
complex’ and a rainforest ecosystem, 
which is generally considered to 
be ‘complex’. These examples are 
introduced on page 7. 

3. The key concepts and constructs 
discussed in the main text are 
represented with abstract diagrams 
that are domain-neutral.

4. Some of the abstract diagrams 
are redrawn underneath, translating 
them into illustrations of the table 
lamp example. This is useful in the 
earlier parts of the primer, so that the 
‘visual language’ used in the abstract 
diagrams can be understood. In 
the later parts of the primer, the 
concepts are better represented 
by the more abstract diagrams but 
their relation to the examples is still 
discussed in the margin.

HOW TO READ THIS PRIMER 
 
 
The pages of this primer include four different kinds of content.
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 1. INTRODUCTION

In both Engineering and Science, the term ‘complex system’ is used to char-
acterise an entity that is either being designed or observed. This often means 
that the system has an analytically challenging number of interacting elements, 
which are described at different levels and which need to be understood from 
different perspectives. When the relationships between these different levels 
and perspectives are not well-defined (or are subject to change), the system can 
be seen as exhibiting unexpected behaviours, sometimes referred to as ‘emer-
gence’. Such emergent behaviours might correspond to unanticipated failures or 
to robust ‘self-organising’ patterns that can be exploited. It might be tempting to 
see emergence, self-organisation and other aspects of complexity as inherent 
to some systems. However, this primer makes no such assumption. Instead, our 
starting premise is that any system can be described in a multitude of ways. What 
distinguishes a complex system from a non-complex system is that we do not 
understand that system well enough to realise our objectives. In other words, 
‘complexity’ is subjective; it describes the stance that is being taken towards a 
system1. That complexity can itself be characterised in many different ways (e.g. 
emergence) depending on the different ways in which this shortfall in under-
standing is manifest (e.g. unpredictability). 

While ‘complexity’ in the design context has traditionally been cast in a rather 
negative light due to the unpredictability it often implies, attempts have also 
been made to harness complexity (e.g. as seen in ‘complexity engineering’ 
(Ottino, 2004) or ‘learning from nature’ (Dressler & Akan, 2010)). The goal has 
been to create more efficient systems with desirable change-related proper-
ties, such as adaptability, robustness, resilience and evolvability (discussions 
of these properties can be found in (Fricke & Schulz, 2005; McManus & Hast-
ings, 2006; Ross et al., 2008; Ryan et al., 2013; Schoettl & Lindemann, 2014). 
In all these cases, concepts of complexity, self-organisation and emergence 
become central to design practice. Furthermore, a complex systems perspec-
tive is becoming increasingly common when tackling design and engineering 
problems which cut across traditional domain boundaries and involve both 
designed and non-designed entities (Chen & Crilly, 2016). There are many 
examples of this:

• distributed computational systems and the internet are studied as natural 
ecologies (Gao, 2000; Forrest et al., 2005); 

• evolutionary design and evolutionary computing study the way selection and 
diversification mechanisms operate in different environmental conditions 
(fitness landscapes) to give different solution spaces (Bentley, 2002; De Jong, 
2002); 

• complex sociotechnical systems are characterised as partially designed and 
partially evolving (de Weck et al., 2011); 

• bio-engineering seeks to design and manufacture artificial systems from 
biological substrates (Endy, 2005; Knight, 2005). 

Adopting a complex systems perspective, such as in the examples above, often 
requires that knowledge be translated across traditional disciplinary bounda-
ries. (In this primer we use the terms ‘discipline’ and ‘domain’ interchangeably, 
with them both referring to fields based on subject areas, which have estab-
lished practices, methods, and bodies of knowledge that members of the field’s 
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community use to further the field, e.g. generating products, obtaining further 
knowledge.) However, despite the fact that many disciplines have made signif-
icant contributions to addressing complexity, they rarely benefit from each 
others’ methods, tools or insights due to domain-specific terminology and a lack 
of explicitness or precision. Within a given context or domain, a lack of explicit 
precision in how terms are used often matters less because all those concerned 
tend to share similar assumptions (e.g. designers belonging to the same organ-
isation designing the same product, scientists in the same team studying the 
same system). Work on rigorously defining complexity-related constructs (e.g. 
‘emergence’, ‘self-organisation’) tends to assume a particular representation of 
the system (e.g. a network) or consensus on the terminology used to describe 
the system (e.g. what the terms ‘element’, ‘component’, ‘subsystem’ mean). The 
lack of an idealised, comprehensive and consistent representation that gener-
alises across domains makes it difficult for those working within one domain to 
have confidence in their interpretation of the solutions proposed within another 
domain (Goldstone & Sakamoto, 2003). This not only limits the dissemination 
of useful knowledge, but also increases the likelihood that practitioners from 
different domains will mis-interpret or mis-apply each other’s work. 

To make the methods, theories and findings from one domain accessible to other 
domains, we need to consider different aspects of complexity in domain-neutral 
terms and how they relate to more general systems characterisations. To provide 
people working in different disciplines and domains with an accessible means 
to navigate each other’s work, this primer develops a domain-neutral frame-
work and diagrammatic scheme that relates the notion of ‘complexity’ to more 
fundamental attributes of system architecture, namely structural encapsulation, 
function-structure mapping and interfacing. These three architectural attributes 
also constitute three core aspects of modularity, which is seen by some as the 
antithesis of complexity (or as a panacea for complexity). For designers, modular 
architectures permit a system to be divided into more manageable parts that can 
be developed, produced and modified relatively independently. In other words, 
modularity is seen as a way of ‘managing complexity’ by containing it within 
well-defined boundaries. For scientists studying complex systems, modularity 
offers a way of more manageably understanding the system by conceptually 
grouping together system elements, states, or behaviours. Relatively strong 
interactions or dependencies exist within modules, whilst relatively weak inter-
actions exist across them. 

The framework we develop is not tied to any established mode of representa-
tion (e.g. networks, equations, formal modelling languages) nor to any domain- 
specific terminology (e.g. ‘vertex’, ‘eigenvector’, ‘entropy’). However, it does 
provide a means of translating between these different formal representations, 
as well as between formal representations and natural language descriptions. 
The framework also allows more general systems ontologies (e.g. Bunge, 1977, 
1979; Goel & Chandrasekaran, 1989; Gero, 1990; Tomiyama et al., 1993) and 
systems modelling frameworks (e.g. SysML,2 CML3) to be related to literature on 
complexity and modularity. Thus, the framework serves as a reference language 
for the discussion of modularity, complexity and other systems constructs, and 
the ways in which they are related (as demonstrated in Table 1 and Table 2). 

To ensure conceptual explicitness, we include domain-neutral definitions and 
diagrammatic representations of the key terms introduced. The objective is by 
no means to comprehensively review the literatures relating to systems, modu-
larity or complexity and therefore we do not endeavour to cite all the ‘classic’ 
works from different domains. Instead, we reference other works mainly to illus-
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trate terminological discrepancies or to point the reader to further details on the 
examples given. For domain-specific reviews, the reader is advised to consult 
introductory texts, on modularity in design (e.g. Ulrich & Eppinger, 1995; Baldwin 
& Clark, 2000; Gershenson et al., 2003); modularity in science (Newman, 2006); 
complexity in design (Luzeaux et al, 2013; Sheard et al., 2015); complexity in 
science (Mitchell, 2009; Ladyman et al., 2013); and system characterisations 
generally (Meadows & Wright, 2008). 

The primer is structured as follows. Section 2 introduces a framework for char-
acterising systems, focusing on characterisations that are particularly pertinent 
to design domains and scientific domains. The framework also defines compo-
sition and classification relationships, which form the basis for levels, hierar-
chies and heterarchies. Section 3 identifies three core aspects of modularity: 
structural encapsulation, function-structure mapping and interfacing. Based 
on these, two abstractions are introduced: function-driven encapsulation and 
interface compatibility. Section 4 uses the systems characterisation framework 
(introduced in Section 2) and the aspects and abstractions of modularity (intro-
duced in Section 3) to characterise different aspects of complexity. Section 5 
concludes the primer by summarising the relationships between the different 
aspects of modularity and complexity. 
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A table lamp is a device found in 
people’s homes that converts electrical 
energy to light. It is a system made 
up of a light bulb, lamp base, and 

A rainforest ecosystem is a self-sustaining 
organisation found in high rainfall areas. 
It is a system made up of producers (e.g. 
trees, fern and moss), non-producers 
(e.g. grasshoppers, iguanas and vampire 
bats), and abiotic elements (e.g. water, 
sun and minerals). The non-producers 

can be divided into primary consumers 
(which eat the producers) or secondary 
consumers (which eat the primary 
consumers). In order for the rainforest 
ecosystem to sustain itself, the producers, 
non-producers and abiotic elements must 
all interact with each other in specific 

ways. For example, there must be 
sufficient numbers of producers to feed 
the primary consumers, and sufficient 
numbers of secondary consumers 
to keep the populations of primary 
consumers in check so that they do not 
consume too many of the producers.

lampshade. In order for the table lamp 
to work, the bulb must be compatible 
with the lamp base in terms of its 
attachment mechanism (e.g. bayonet, 

screw) and wattage (e.g. 60W, 100W). 
The shade must also be attached for 
the system to be complete.
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2. CHARACTERISING SYSTEMS

To discuss different aspects of complexity and modularity without being tied to 
the assumptions that particular domains make about systems, we need to have 
a set of domain-neutral constructs and terms (Chen & Crilly, 2016). We use the 
term ‘characterisation’4 to refer to any representation, model, specification or 
description of an entity. Indeed, even calling an entity a ‘system’ indicates that 
a certain stance is being taken towards it; the entity is being characterised as a 
system. By its very nature, a systems characterisation of an entity assumes it can 
be characterised in multiple ways, each of which emphasise different elements 
or aspects, reflecting different perspectives and purposes. Within a given 
context, characterisations are often reified by the community who apply them 
(Whitehead, 1919) so that a particular characterisation of an entity is treated as 
the entity itself or as being inherent to the entity.

For the purposes of this primer, we define a ‘system’ as a set of entities and 
relationships, where the relationships are connections or interactions between 
the entities (for a review of systems definitions see Skyttner, 2005: pp. 57–58; 
Veeke et al., 2008: p. 9). We call the entities in the system the ‘elements’ of the 
system, which might be considered ‘components’ or ‘subsystems’ with respect 
to the system, as defined below (of course, these elements might themselves 
be considered systems in some other characterisation). In order to avoid confu-
sion between cases where we are referring to an entity ‘in the world’ and cases 
where we are referring to a characterisation of an entity in the world, we use the 
term ‘instance’ to refer to the former and ‘type’ to refer to the latter.5 (By ‘entity 
in the world’ we mean a concrete realisation, but this need not be physical. For 
example, a process being executed or a procedure being adopted would count 
as entities in the world within the context of certain system characterisations.) 
This characterisation might include system architecture, design specifications, 
functions, behaviour, and so on.

2.1. Composition, classification and levels
In terms of the relationships between entities, we can distinguish between two 
formal relationships, ‘compositional’ (part-whole) relationships, and ‘classifica-
tory’ (subtype-type) relationships. These two relationships provide the basis for 
defining ‘levels’ and ‘hierarchies’ (see Section 2.1.2).

2.1.1. Composition and classification
A composition relationship implies an entity (the ‘whole’) that can be broken 
down into a set of further entities (the ‘parts’). The term ‘element’ itself implies 
a composition relationship between the element and the system. However, 
different sets of a system’s elements can also have part-whole relationships with 
each other. We use the terms ‘subsystem’, ‘component’ and ‘supersystem’ to 
characterise such relationships. These are relational terms that only make sense 
when defined with respect to each other and with respect to a given characteri-
sation (see Figure 1). With respect to a given system, s,

• a subsystem of s is a subset of the entities and relationships in s;
• a component of s is an entity in s that cannot be further decomposed;
• a supersystem of s is a superset of the entities and relationships in s. 
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Note that when we use the term ‘system’, what we really mean is a system char-
acterisation; we do not make any metaphysical claims about the decomposa-
bility of physical entities. In addition to defining subsystems, components and 
supersystems, with respect to a given system, we define an ‘environment’ of the 
system as a set of entities and relationships that are not in the set of entities and 
relationships constituting the system but that belong to a supersystem of the 
system. The difference between ‘the supersystem of s’ and ‘the environment of 
s’ is that the supersystem of s includes s, whereas the environment of s does not. 

Entities can also be characterised at different levels of abstraction. Two elements 
can be seen to be different to each other at one level but the same as each other 
at another, more abstract level, where they belong to the same class or ‘type’. 
Classificatory relationships between characterisations determine which char-
acterisations can be treated as equivalent (see Figure 2).

We define a ‘type’ as a taxonomic group or ‘class’ associated with a set of 
subtypes and instances. With respect to a given system type, S,

• a subtype of S is a taxonomic group containing a subset of the entity types, 
entity instances and characterisations contained in the set defined by S;

• a supertype of S is a taxonomic group containing a superset of the entity types, 
entity instances and characterisations contained in the set defined by S;

• an instance of S is a concrete realisation of S (an entity in the world) which 
belongs to the set of entities defined by S.

2.1.2. Hierarchies and heterarchies
The terms ‘level’ and ‘hierarchy’ are frequently found in systems discourse. The 
part-whole (composition) and subtype-supertype (classification) relationships 
defined above give us a means of more precisely understanding these terms. 
Implicit in the classification relationship is the ‘resolution’ of the characterisation 

Figure 1. In this diagrammatic scheme, 
there are different types of entity 
(represented by different shapes 
and interfaces). Here, C1, C2 and 
C3 represent component types and 
can be combined to make a system 
type SC1+C2+C3. System type SC1+C2 is 
a subsystem of SC1+C2+C3. Entity C3 
is a component of SC1+C2+C3 but is the 
environment of system SC1+C2 (assuming 
no other entities exist, otherwise it is just 
part of the environment). These basic 
aspects of composition apply both to 
types and instances of entities.

In a table lamp SC1+C2+C3, C1 might 
refer to the base, C2 to the bulb, and 
C3 to the shade. Subsystem SC1+C2 might 
refer to the ‘bulb with base’ part of the 
table lamp. Similarly, in a rainforest 
ecosystem SC1+C2+C3, C1 might refer to 
the producers, C2 to the consumers, and 
C3 to the abiotic elements. The subsystem 
SC1+C2 might refer to the biotic elements. 
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Figure 2. In this diagrammatic scheme, 
component types (outlined shapes) 
can be represented at two levels of 
abstraction: with stars or without stars, 
where stars represent some feature of 
the component. These types can also 
be instantiated (solid shapes). Where 
components are viewed at a level of 
abstraction that makes stars visible, 
there are two options: one star or two 
stars. Here, two different components 
are depicted, c2* and c2** (lower-case). 
Components c2* and c2** are instances 
of component types C2* and C2** (upper-
case), both of which are a subtype of 
C2. As such, c2* and c2** are also both 
instances of C2. These basic aspects 
of classification apply to components, 
systems, subsystems, supersystems 
and environments. 
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More specific characterisations of bulb 
(C2) can be given, such as 60W bulb 
and 100W bulb. Similarly, it is possible 
to give more specific characterisations 
of rainforest non-producers (C2). 
For example, we might use the kind 
of rainforest to distinguish between 
tropical rainforest non-producers 
(C2*) and temperate rainforest non-
producers (C2**). These could then 
be used to refer to a particular set 
of tropical and temperate rainforest 
producers respectively, e.g. c2* might 
refer to the non-producers currently 
living in a tropical rainforest in 
Queensland, and c2** could refer to 
the non-producers currently living in 
a temperate rainforest in Alaska.
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(also known as ‘granularity’ or ‘level of abstraction’), which is the set of distinc-
tions that can be made between the elements. Implicit in the composition rela-
tionship is what is known as the ‘scope’ of the characterisation, which is the set 
of elements involved (see Ryan, 2007 for a more detailed discussion of ‘scope’ 
and ‘resolution’).

We define level as a specification of both the scope and resolution of a charac-
terisation. For example, the level for the system type SC1*+C2*+C3* is defined by the 
scope of C1*+C2*+C3* and the resolution of SC1*+C2*+C3* as a subtype of SC1+C2+C3. 
Given the definition of ‘level’, a (clean) hierarchy is defined as a set of related 
characterisations where the levels do not overlap. A ‘classification hierarchy’ is 
a structure in which if one element is the subtype of another element, it cannot 
also be its supertype. A ‘compositional hierarchy’ is a structure in which, if one 
element is the part of another element, that other element cannot also be a part 
of the first. For example, in SC1*+C2*+C3*, the component type C2* is related to the 
system type SC1*C2*C3* in a compositional hierarchy and to the component type 
C2 in a classification hierarchy (see Figure 3).

Figure 3. An example of a (clean) 
hierarchy. C2 is related to SC1+C2 in 
compositional hierarchy, and C2* is 
related to SC1*+C2* in compositional 
hierarchy. C2* is related to C2 in 
classificatory hierarchy, and SC1*+C2* 
is related to SC1+C2 in classificatory 
hierarchy. 
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In this diagram all the compositional 
and classificatory relationships 
are straightforward. For example, 
‘bulb’ (C2) has a straightforward 
subsystem relationship with ‘base with 
bulb’ (SC1+C2) and a straightforward 
supertype relationship with ‘60W 
bulb’ (C2*). Similarly, ‘rainforest non-
producers’ (C2) has a straightforward 
subsystem relationship with ‘biotic 
elements of the rainforest’ (SC1+C2), 
and a straightforward supertype 
relationship with ‘tropical rainforest 
non-producers’ (C2*). 
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In the case of complex systems characterisations, multiple hierarchies overlap in 
a single characterisation. This is what is referred to as a ‘heterarchy’ (McCulloch, 
1945, Gunji & Kamiura, 2004; Sasai & Gunji, 2008), ‘panarchy’ (Gunderson & 
Holling, 2001) or ‘entangled hierarchy’ (Palla et al., 2005) and can be represented 
by hypernetworks (Johnson, 2007; Chen et al., 2009). Figure 4 depicts a heter-
archy that contrasts with the hierarchy described above. We discuss heterarchy 
further in Section 4.3.1.

2.2. Aspects and mapping relationships
As well as composition and classification relationships between different 
systems characterisations, there are also mapping relationships. These are 
used to relate characterisations of different aspects6 of the system, e.g. func-
tions, properties, behaviour, architecture.7 This section considers three aspects 
of systems that are important in Design and Science: ‘architecture’, ‘functions’ 
and ‘properties’. The pervasiveness of these three concepts is evidenced by the 
existence of several ontologies relating them, both in design domains (e.g., Goel 
& Chandrasekaran, 1989; Gero, 1990; Tomiyama et al., 1993) and in scientific 
domains (e.g., Bunge, 1977; 1979; Wand & Weber, 1990).

2.2.1. Architecture
We define a ‘system architecture’ as a characterisation of a system in terms of 
compositional relationships between its elements, where the simplest possible 
architecture is a single component type. These definitions keep the characteri-
sation of a system’s structure distinct from the mapping relationships between 
its structure and function,8 and is consistent with several definitions and discus-
sions of architecture in the literature (e.g. Simon, 1962; Alexander, 1964; Soft-
ware Engineering Standards Committee, 2000; Maier & Rechtin, 2009).9 

Although the terms ‘architecture’ and ‘structure’ are typically thought of in terms 
of spatial relationships between components (e.g. configuration design in the 
manufacturing literature, Jiao & Tseng, 1999b), we intend ‘architecture’ to be 
used in a more general sense here to refer to any relationships (e.g. temporal, 
logical, social, causal) that might exist between a set of entities. Our definition is 
therefore general enough to accommodate architectures defined at high levels 

Figure 4. An example of a heterarchy. 
Although there is a classificatory 
hierarchical relationship between C2 
and C2*, the relationship between SC1*+C2* 
and SC1+C2 cannot be characterised by 
classificatory hierarchy alone. The 
relationship between C2 and SC1*+C2, 
and between C2* and SC1*+C2 cannot 
be characterised by compositional 
hierarchy alone.
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Heterarchy. Not all the relationships 
between the different characterisations 
are straightforward classificatory 
or compositional relationships. For 
example, the relationship between 
‘bulb’ (C2) and ‘base with 60W bulb’ 
system (SC1+C2*), is not a straightforward 
subsystem-supersystem one. This is 
because ’60W bulb’ is specified at 
a level of detail that exceeds that 
of the specification of ‘base’ (which 
might have variants that are or are 
not compatible with 60W bulbs). 
Similarly, the relationship between 
‘rainforest non-producers’ (C2) and 
‘rainforest producers with tropical 
rainforest non-producers’ (SC1+C2*) is 
not straightforward (as again, the 
entities that make up the system are 
specified at different levels). 

Architectural characterisation. 
An architectural characterisation of 
the lamp system might refer to the way 
the lamp base, bulb and lampshade 
fit together. An architectural 
characterisation of the rainforest 
ecosystem might refer to the way the 
producers, consumers and abiotic 
elements interact with each other.
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of abstraction with respect to their applications, such as reference architectures 
(Holtta & Salonen, 2003; Cloutier et al., 2010) and product family architectures 
(Cloutier et al., 2010). It is also worth noting that while these high level architec-
tures define a set of constructs with which to decompose certain system types, 
they themselves are system types with a particular architecture (in the same way 
that grammars are as much linguistic systems as are the languages defined by 
those grammars). 

2.2.2. Functions
The term ‘function’ is much discussed across various literatures on how systems 
operate (see reviews in Erden et al., 2008; Crilly, 2010; Houkes & Vermaas, 2010; 
Preston, 2009; Vermaas & Dorst, 2007), and it is not always easy to see how a 
single definition can apply across domains (e.g. to both artefacts and organ-
isms). Generally, however, functions describe what a system should do in serving 
some entity, such as satisfying the goals of some agent (e.g. users, designers) 
or permitting the system to survive and reproduce (e.g. in an ecosystem or 
market). We leave debate over the nuances of such definitions to other authors 
and instead focus on clarifying the relationship that functional characterisations 
have to other kinds of characterisation. Even though the realisation or ‘fulfilment’ 
of a function by an entity is dependent on its properties and architecture, the 
functional characterisation of the entity can be considered independently of 
these other aspects. 

It is also worth emphasising that we do not preclude associations being made 
between functions and other aspects of systems. For example, a functional 
requirement of a product might be that it has to adhere to a particular archi-
tecture or possesses certain specific properties. Furthermore, functions can 
themselves be treated as entities in their own right and given compositional 
characterisations (the ‘subfunctions’ it is composed of or decomposes into) and 
classificatory characterisations (the functions it is seen to be a variant of and 
which variants it itself has).10

2.2.3. Properties
We use ‘property’ as an umbrella term for anything that can be said to be true 
of an entity (this might even include having a particular architecture or function). 
When this is expressed statically (or atemporally11), we call the property a ‘state’ 
(Tomiyama et al., 1993). When it is expressed dynamically (through time), we use 
the term ‘behaviour’, or more precisely, ‘state transitions’ (Gero, 1990; Kam et 
al., 2001) and ‘state transition rules’ (see also Section 4.3.3).

Function-based characterisation. 
A function-based characterisation 
of the lamp system might be to 
provide users with diffused light. A 
function-based characterisation of the 
rainforest ecosystem might be to sustain 
populations of particular species. 

States. The states of the lamp system 
might include being “on” or “off” while 
the states of a rainforest ecosystem 
might include being in “wet season” or in 
“dry season”.

State transitions. The state transitions 
for the lamp system would be “on ¦ 
off”, “off ¦ on”, with the state transition 
rules being “if circuit broken, on ¦ off”, 
“if circuit formed, off ¦ on”. The state 
transitions for the ecosystem would be 
“wet season ¦ dry season” and “dry 
season ¦ wet season”, with the state 
transition rules “if rainfall exceeds x, 
dry season ¦ wet season”, “if rainfall 
drops below x, wet season ¦ dry 
season”.

Some of these characterisations might 
seem “unnatural” when applied to the 
rainforest ecosystem example. For 
example, it seems strange to see the 
relationships between biotic and abiotic 
rainforest elements as architectural, 
to assign the rainforest ecosystem the 
function of sustaining a population 
of species or to see “dry season” and 
“wet season” as states. The reason why 
these characterisations feel a lot more 
natural in the table lamp example is the 
human-centric nature of the way the 
function is defined, and from which the 
other characterisations (architectural 
and property-based) are derived.



From modularity to emergence  |  14

3. ASPECTS AND ABSTRACTIONS 
OF MODULARITY

A system characterisation with a straightforward compositional hierarchy 
describes components and subsystems as interacting (or interfacing) with each 
other in well-defined, well-understood ways and is said to be ‘modular’. Although 
there exist many different notions of ‘modularity’, they can be understood and 
distinguished on the basis of three fundamental attributes of system architec-
ture: structural encapsulation, function-structure mapping, and interfacing 
(Section 3.1). Table 1 illustrates how these fundamental attributes can be used to 
consolidate different definitions of modularity found in the literature. From these 
three fundamental architectural attributes, we can derive two further abstrac-
tions, function-driven encapsulation and interface compatibility (Section 3.2). 

3.1. Three core aspects of modularity
The three fundamental attributes of system architecture that we associate with 
modularity are represented diagrammatically in Figure 5. In this primer, we treat 
these as the three core aspects of modularity and require that all three of them 
be satisfied for a set of system elements to be collectively characterised as a 
‘module’:

• structural encapsulation means that the elements can collectively be treated 
as a single encapsulated component;

• one-to-one function-structure mapping means that the set of elements 
collectively map to a particular function;

• interfacing means that as a collective, the set of elements has well-defined 
interactions with other system elements.

3.1.1. Structural encapsulation
We use the term ‘structural encapsulation’ to refer to the grouping of related 
system elements, i.e. subsystems, into units that can then be treated as compo-
nent types at some level of abstraction. Structural encapsulation also implies 
‘interface decoupling’ since it allows the relationships between a set of related 
system elements to be considered independently from its interactions with 
other system elements. 

The table lamp system is usually 
considered to be more modular 
than the rainforest ecosystem. This 
is because the interactions between 
the bulb, lamp base and lampshade 
are well-defined with respect to their 
fulfilment of the lamp’s function, while 
in the case of the rainforest ecosystem, 
the interactions between the producers, 
consumers and abiotic elements are 
less well-defined, and the interactions 
are often inter-dependent. 

Structural encapsulation. In the table 
lamp example, ‘bulb’ can be treated 
as a structurally encapsulated unit, and 
so can ‘base with bulb’ (which includes 
‘bulb’). In the rainforest ecosystem 
example, ‘consumers’ can be treated 
as a structurally encapsulated unit, 
and so can ‘biotic elements’. This latter 
example might feel more forced 
because we are not used to seeing sets 
of species as an encapsulated unit, 
but this is purely due to our habits in 
characterisation. In a similar way, most 
of us are not used to seeing a light bulb 
as a collection of different types of 
elements or atoms.

Figure 5. Three aspects of modularity: 
structural encapsulation (the module is 
defined by its composition and structure 
relating its elements to each other, as 
indicated by the block arrow), function-
structure mapping (the module is defined 
by the collective mapping of a structured 
set of elements to a function – in this 
case, F1, as indicated by the arrow), and 
interfacing (the module is defined by how 
a set of elements interacts with other 
systems, as indicated by the dotted lines).  
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3.1.2. Function-structure mapping
We use the term ‘function-structure mapping’ to refer to the mapping between 
a set of related system elements (i.e. a subsystem) and a function. This struc-
tured set of system elements can then be encapsulated into a component type 
because they are collectively associated with the function. We refer to such 
encapsulation as ‘function-driven’ (see Section 3.2.1 below).

3.1.3 Interfacing
We define the term ‘interface’ as an aspect of the element that allows it to 
interact with another element or set of other elements in the same system. For 
those designing physical products it might be most natural to think of interfaces 
in terms of physical structure or geometric fit. However, interfaces can also be 
realised in nonphysical ways and the interactions need not be determined by 
geometry. Examples of non-physical interfaces include standards, protocols, 
agreements, languages, signals and processes.

Which aspect(s) of an element is treated as its interface depends on the char-
acterisation adopted, which defines the set of elements with which interac-
tion occurs.12 This might also mean that multiple interfaces are identified for an 
element. Indeed, in some cases the interfaces might even be determined by 
function-structure mapping. For example, what makes the geometry of a given 
system element its interface might be the requirement of physical fit for the 
formation of a composite structure to realise a mechanical or chemical function. 
In such cases, there is an inextricable link between structure and function.

The three aspects of modularity introduced in this primer are useful for struc-
turing our understanding of the modularity literature, allowing it to be more easily 
understood and compared (Table 1).

Function-structure mapping. In the 
table lamp example, ‘base with bulb’ 
could map to the function of converting 
electrical energy to light energy, and 
‘lampshade’ could map to the function 
of diffusing the light emitted. In the 
rainforest ecosystem example, ‘biotic 
elements’ might map to the function of 
maintaining the food web, and ‘abiotic 
elements’ could map to the function of 
enabling the biotic elements to survive.

Interfacing. In the table lamp 
example, ‘bulb’ interacts with ‘lamp 
base’ via ‘bulb-base interface’. In 
the rainforest ecosystem example, 
‘producers’ and ‘non-producers’ 
interact with each other via ‘eaten-
eating interface’.

   Aspect of modularity    Examples from literature

  SE                  F-SM            I 

×

Abstract characterisation: 
• A module is a physical or conceptual grouping of components (Jiao & Tseng, 1999b).
• Modules contain a high number of components that have minimal dependencies upon 

and similarities to other components not in the module (Gershenson et al., 1999).

Network characterisation: 
• A subsystem is a module when the number of edges within the subsystem is much higher than 

the expected number of edges derived from an equivalent random network model with the same 
number of elements and similar distribution of links between elements with no modular structure 
(Newman, 2010).

In manufacturing and product design: 
• The most modular architecture is one in which each functional element of the product is 

implemented by exactly one chunk (subassembly) and in which there are few interactions 
between chunks. Such a modular architecture allows a design change to be made to one 
subassembly without affecting the others (Ulrich & Eppinger, 1995).

In software design: 
• There should be no access to, informational flow to, or inter-activity between modules (George 

& Leathrum, 1985). Modular programming has developed coding techniques which “(1) allow one 
module to be written with little knowledge of the code in another module, and (2) allow modules to 
be reassembled and replaced without reassembly of the whole system.” (Parnas, 1972: p. 1053).

Table 1. Different notions of modularity 
related to the three aspects of modularity 
introduced in this primer: Structural 
encapsulation (SE), Function-structure 
mapping (F-SM) and Interfacing (I).
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   Aspect of modularity    Examples from literature

  SE                  F-SM            I 

Abstract characterisation 
• The term ‘modular’ refers to the minimisation of the number of functions per component (Ishii et 

al., 1995). 

In manufacturing and product design 
• ‘Conceptual’ modules perform the same functions even if they have different physical 

compositions (Otto & Wood, 2001). 

In manufacturing and product design
• Product modularity is defined in terms of “(1) Similarity between the physical and functional 

architecture of the design and (2) Minimization of incidental interactions between physical 
components.” (Ulrich & Tung, 1991: p. 73). Therefore a modular product or subassembly 
has a one-to-one mapping from functional elements in the function structure to the physical 
components of the product (Ulrich, 1995).

• A module is a set of components grouped together in a physical structure and by some 
characteristic based on the designer’s intent (Di Marco et al., 1994; Newcomb et al., 1998).

• A module is a component or group of components that can be removed from the product non-
destructively as a unit, which provides a unique basic function necessary for the product to 
operate as desired, and modularity is the degree to which a product’s architecture is composed 
of modules with minimal interactions between modules (Allen & Carlson-Skalak, 1998).

• Modularity refers to the “building of complex product or process from smaller subsystems that 
can be designed independently yet function together as a whole” (Baldwin & Clark, 1997: p. 84).

• Modularity requires similarity of functional interactions and suitability of inclusion of components 
in a module (Huang & Kusiak, 1998).

Abstract characterisation
• A module is a component or subsystem in a larger system that performs specific function(s) and 

emerges as a tightly coupled cluster of elements sharing dense intra-module interactions and 
sparse inter-module interactions (Sarkar et al., 2013).

In manufacturing and product design
• A module is a group of standard and interchangeable components (Galsworth, 1994). 
• Modular systems are those that are constructed from standardised units of dimensions for 

flexibility and use (Walz, 1980).

In manufacturing and product design
• A modular product is “a function-oriented design that can be integrated into different systems 

for the same functional purpose without (or with minor) modifications” (Chang & Ward, 1995 in 
Gershenson et al., 2003: p. 298).

• Modules are groups of components that can easily be re-used or re-manufactured, also 
considering material compatibility (Sosale et al., 1997).

In software design
• Modularity refers to “tools for the user to build large programs out of pieces” (Chen, 1987, in 

Gershenson et al., 2003: p. 297).

Abstract characterisation
• A module is a structurally independent building block of a larger system with fairly loose 

connections to the rest of the system. They have well-defined interfaces which allow independent 
development of the module as long as the interconnections at the interfaces are retained (Holtta 
& Salonen, 2003).

In manufacturing and product design
• Modularity is design with subsystems “that can be assembled and tested prior to integration… 

to reduce the time and cost of manufacturing” (Carey, 1997, in Gershenson et al., 2003: p. 298).
• Modularity is using sets of units designed to be arranged in different ways (Belle & Kissinger, 1999).
• Physical adjacency, energy transfer, information transfer and material exchange can be used to 

group elements together so they are treated as modules (Pimmler & Eppinger, 1994).

Abstract characterisation
• Modules are cooperative subsystems which (i) can be combined and configured with similar units 

to achieve different outcomes; (ii) have one or more well-defined functions that can be tested in 
isolation from the system and that (iii) have their main functional interactions within rather than 
between modules (Marshall et al., 1998).

Table 1 (continued)

× ×

×

×

× ×

××

×××
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3.2 Two abstractions from modularity
From the three core aspects outlined above, we can derive two further abstrac-
tions that also pervade the modularity literature: function-driven encapsulation 
and interface compatibility.

3.2.1 Function-driven encapsulation
We use the term ‘function-driven encapsulation’ to describe cases where the 
criterion for encapsulation is the fulfilment of a function (see Figure 6). What 
connects elements within a group to each other is that they collectively map 
to a function, and what makes this set of elements disconnected from other 
elements is the fact that these other elements do not participate in the fulfilment 
of that function (being ‘connected’ or ‘disconnected’ might also be a matter of 
degree, and the mapping to a function is specific to a particular level of abstrac-
tion and scope). Function-driven encapsulation can be seen as one of a set of 
many different forms of encapsulation, each of which is distinguished by the 
kind of criteria that determines encapsulation. For example, we might also have 
property-driven or behaviour-driven encapsulation where elements are seen 
as ‘connected’ when they collectively realise a particular property.13 However, 
since our definition of modularity is concerned with the relationship between 
elements and functions, we require encapsulation to be function-driven.14

We say that a system architecture is ‘completely modular’ if every element in 
the system belongs to a functional group and fulfilment of the system’s overall 
function is completely accounted for by these function-structure mappings (see 
Figure 7). In the design and management of systems, encapsulation has been 
said to provide a means of ‘managing complexity’ by hiding the intricacies of 
certain regions of the system so that characterisations of them can be sepa-
rated from the characterisation of the relationships that exist between them and 
other regions of the system. 

Function-driven encapsulation. 
In the table lamp example, ‘bulb’ 
can be treated as an encapsulated 
unit by virtue of serving the function 
of converting electrical energy to 
light (F1). In the rainforest ecosystem 
example, ‘non-producers’ can be 
treated as an encapsulated unit 
because they serve the function 
of controlling the population of 
‘producers’ (F1).

Figure 6. An example of function-
driven encapsulation: the structural 
encapsulation of the module is determined 
by function-structure mapping. 
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Figure 7. An example of interface 
compatibility, leading to a modular 
architecture. The system type SC1+C2 has 
a completely modular architecture since 
all its elements (both C1 and C2) belong 
to or constitute modules (M2 and M1, 
respectively). In this case, the modules 
are defined by function-structure 
mapping.
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3.2.2 Interface compatibility
Interface compatibility refers to the compatibility between different components 
of the system. This compatibility might be a matter of degree and characterised 
as the strength of interaction. Interface compatibilities between system compo-
nents determine how different groups of system elements are able to interact 
with each other, thus providing a characterisation of the system’s architectural 
constraints. In a completely modular architecture, since all the elements would 
be modules or would belong to modules and hence be encapsulated in compo-
nents, interactions between elements in different components would always 
be via their interfaces. Well-defined interfaces permit components and sub- 
systems with different structures and functions to occupy the same ‘position’ as 
each other in the system. 

If all modules (components mapped to functions) in a system had the same 
mutually compatible interfaces with each other, there would be no architectural 
constraints at the module level since any module would be able to interact with 
any other module i.e. architectural degrees of freedom would be maximised, 
and every component could be ‘repositioned’. This is known as ‘sectional’ 
modularity (Ulrich & Tung, 1991; Ulrich, 1995), where every component in 
the system has the same set of interfaces. At the other extreme, where inter-
faces minimise architectural degrees of freedom and each component has 
a specific ‘position’ or ‘role’ in the system, we have ‘slot’ modularity (Ulrich & 
Tung, 1991; Ulrich, 1995). In ‘slot’ modularity, each component has a unique set 
of interfaces, which implies that it has a unique set of interactions with other  
components in the system and hence can only be located in a single specific 
position with respect to them. 

Interface compatibilities can provide a means of controlling which parts of the 
system can vary. In a given system architecture, different elements of different 
types (possibly mapping to different functions) can interact with the same set 
of other elements, so long as they have the same interface compatibilities.15 In a 
modular architecture (where the system can be decomposed into components 
mapped to functions), interface compatibilities determine which components 
can be swapped or substituted for each other. The terms ‘component-sharing’, 
(Ulrich, 1995) ‘substitution’ (Garud & Kumaraswamy, 1993, Mikkola & Gassmann 
2003) and ‘standardisation’ (Miozzo & Grimshaw, 2005) are used in the literature 
to refer to cases where, at a particular level of abstraction, different component 
types have the same interfaces (i.e. they are compatible with the same set of 
other component types).16 This ‘component-sharing’, together with overall 
architectural similarity between products, can be the basis for establishing 
product ‘families’ (Galsworth, 1994; Ulrich, 1995; Jose & Tollenaere, 2005). The 
term ‘component-swapping’ (Ulrich, 1995) is used to refer to cases where, at a 
particular level of abstraction, component types are mapped to different func-
tions but have the same interfaces and therefore can be substituted for each 
other architecturally (see Figure 8). If these differences in component function 
have implications for a product’s overall function, they provide the basis for the 
different product variants in product ‘families’.17

Interface compatibility provides us with a formal means of characterising and 
analysing architectural variety in terms of elements’ compatibilities with each 
other and the different architectural configurations they permit.

Interface compatibility. In the 
table lamp example, The bulb is 
compatible with the base because it 
has a particular type of attachment 
mechanism (e.g. screw), which serves as 
its interface with the base. Similarly, in 
the rainforest ecosystem example, the 
non-producers are compatible with the 
producers because they have particular 
dietary habits which serve as their 
interface with the producers.
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Figure 8. ‘Component-swapping’ 
always implies ‘component-sharing’, 
and vice versa. When we are taking 
the perspective of a component (here, 
the octagon) that can interact with a 
variety of other entities, the architecture 
is characterised as ‘component-
swapping’ (different components can 
be swapped ‘in or out’ of the octagon). 
When we are taking the perspective of 
different entities that can all interact 
with the same component (the octagon), 
the architecture is characterised as 
‘component-sharing’ (the octagon is a 
component that can be shared ‘between’ 
different entities).  

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is 
a 

su
bt

yp
e 

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3] 
from performing FX

Fig 2 C2*

is 
a 

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is 
a 

su
bt

yp
e 

of

is 
a 

su
pe

rty
pe

 o
f

is 
a 

su
bt

yp
e 

of

is 
a 

su
pe

rty
pe

 o
f

is 
a 

su
bt

yp
e 

of

is 
a 

su
pe

rty
pe

 o
f

is 
a 

su
bt

yp
e 

of

is 
a 

su
pe

rty
pe

 o
f

is 
a 

su
bt

yp
e 

of

is 
a 

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2    or    SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

The table lamp example can be seen 
as permitting ‘component-swapping’ 
or ‘component-sharing’. When we are 
taking the perspective of a ‘base’ that 
can accommodate a variety of ‘bulbs’ 
(e.g. different power ratings, shapes), 
the architecture is characterised as 
‘component-swapping’; when we are 
taking the perspective of different 
types of ‘bulb’ that are all compatible 
with a ‘base’, the architecture is 
characterised as ‘component-sharing’. 
Similarly, for the rainforest ecosystem 
example when we are taking the 
perspective of ‘producers’ that satisfy 
the dietary requirements of different 
species of ‘consumers’, the architecture 
is characterised as ‘component-
swapping’; when we are taking the 
perspective of the different species of 
‘consumer’ whose dietary requirements 
are satisfied by the same ‘producers’, 
the architecture is characterised as 
‘component-sharing’.
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4. ASPECTS OF COMPLEXITY

The term ‘complexity’ is used in different ways in the design literature and is 
often used interchangeably with ‘complicated’. We treat these as two distinct 
concepts (as several authors also do, e.g. Sargut & McGrath, 2011). Character-
ising a system as ‘complicated’ is to understand it as having many components, 
subsystems and interactions; however, as with a simple system, it is theoreti-
cally possible to map functions to components and subsystems in a one-to-one 
fashion, and to describe the interactions between them. By contrast, charac-
terising a system as ‘complex’ is to understand the system in a way that does 
not allow this kind of one-to-one mapping or full description of the interactions 
between components and subsystems. The three aspects and two abstractions 
of modularity discussed above can be used to distinguish between different 
aspects of complexity.

4.1 Complexity as non-one-to-one function-structure mappings
Function-driven encapsulation ensures one-to-one mapping between func-
tion and architecture. Complexity arises when, at some level of abstraction, the 
mapping is not one-to-one. 

4.1.1 Multi-structural function realisation and architectural robustness
We use the term ‘multi-structural function realisation’ to describe cases where a 
function maps to more than one architecture (more than one component type). 
In Design and Engineering, the possibility of realising a function with different 
architectures offers the opportunity for robustness and reduction in cost. 
Robustness comes from the fact that if one architecture mapping to a function is 
not realised, others may be able to realise it instead. Cost reduction would come 
from the fact that the number of components required for a given level of robust-
ness might be lower than if this robustness were achieved through duplication of 
components (see Figure 9).

Redundancy through different 
architectures. In the table lamp 
example, redundancy might be 
achieved through duplicating ‘lamp’ 
(duplicated architecture) or through 
having one ‘lamp’ and one ‘candle’. 
Similarly, in the rainforest ecosystem 
example, redundancy might be 
achieved by having either enough 
‘iguanas’ to consume ‘grasshoppers’ 
or by having enough ‘iguanas’ and 
‘vampire bats’ to do the same.

Figure 9. Redundancy through 
duplicated architectures and distinct 
architectures. Top row: Both the 
[C1+C2+C3] architecture and the 
C4 architecture map to FX. Bottom 
left: redundancy in FX is provided by 
an architecture with duplication of 
[C1+C2+C3]. Bottom right: redundancy 
in FX is provided by two distinct 
architectural realisations, [C1+C2+C3] 
and C4. 
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In Engineering Design, the term ‘principle redundancy’ (Pahl & Beitz, 1996) 
describes cases in which multiple architectures realise the same function. 
In Biology, the term ‘degeneracy’ describes cases where, when a particular 
element is not able to fulfil its function, other means of fulfilling that function 
are possible (Tononi et al., 1999; Edelman & Gally, 2001; Whitacre, 2010; Chen 
& Crilly, 2014). For example, a function that was previously associated with a 
single element might also become distributed among multiple elements. 

Compared to duplication, multi-structural function realisation offers a more 
robust form of redundancy when the different architectures able to realise the 
function have different points of fragility and strength (see Figure 10). On the 
other hand, it makes the function-structure mappings harder to analyse, and 
when there is system failure, it can be difficult to identify the elements involved. 

We say that a system is ‘architecturally robust’ if variety in function is low with 
respect to architectural variety (the ratio of the number of functions to the number 
of architectures is low). Architectural robustness is positively associated with 
evolvability (Whitacre, 2010) since the greater the architectural variation with 
respect to a function, the larger the set of possibilities to be selected from, and 
the greater the evolvability. Selection pressures can also be characterised in 
terms of function realisation. For example, referring back to the architectures 
in Figure 9, having both [C1+C2+C3] and C4 as possibilities would make the 
system both architecturally robust with respect to FX (see Figure 10) and more 
evolvable with respect to FX compared to the case where only one of the archi-
tectures could be realised. If the system found itself in an environment requiring 
FX to be realised, there would be a selection pressure in favour of the architecture 
[C1+C2+C3]. We might also say that the evolvability of the system with respect to 
FX is in virtue of its adaptability with respect to FX. To some extent, this is simply 
a question of the level at which we are considering the system. For example, a 
production process might permit a change in parts supplier which then allows a 
manufacturing firm to resist changes in supplier prices; an organism’s ability to 
change its behaviour in response to different temperature conditions allows it to 
operate in different environments.18

Figure 10. An example of how multi-
structural function realisation provides 
robustness. As in Figure 9, [C1+C2+C3] 
and C4 are both mapped to FX. Top 
row: C5 prevents the architecture 
[C1+C2+C3] from realising FX. Bottom 
left: The presence of C4 prevents 
[C1+C2+C3]+[C1+C2+C3] from realising 
FX. Bottom right: The multi-structural 
function realisation architecture of 
[C1+C2+C3]+C4 allows it to be more 
robust than [C1+C2+C3]+[C1+C2+C3] 
with respect to realising FX since it can 
do so in the presence of C5. 
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Multi-structural function realisation. 
If there is a power cut, then having 
‘lamp’ and ‘candle’ would be more 
robust than having a pair of ‘lamps’. 
Similarly, if there were a disease 
affecting only iguanas, it would be 
more robust to have both iguanas 
and vampire bats to consume the 
grasshoppers.
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4.1.2 Context-dependent multi-functionality and architectural flexibility
We use the term ‘context-dependent multi-functionality’ to refer to cases where 
an architecture maps to different functions based on the wider system archi-
tecture it is part of. In systems terms, this means a subsystem realises different 
functions based on which other systems it is connected to (its environment), i.e. 
the supersystem it is part of. Figure 11 shows how C2 can be characterised as 
context-dependently multi-functional. When it is connected to C1 and [C3+C6], 
it realises FY1, and when it is connected to C1 and [C3+C7], it realises FY2. 

In design domains, re-purposing of products, product parts and processes 
are examples of context-dependent multi-functionality. For example, a steel 
rod realises different functions depending on the wider physical structure it is 
part of; in software, the same data can have different functions depending on 
the sections of the program that they flow into; the biochemical function of a 
protein can depend on the other molecules present; the economic impact of one 
consumer’s purchase depends on the purchasing activities of other consumers.

When the contexts in which different functions are realised are not well- 
understood, functions may be realised unexpectedly or ‘emerge’ (sometimes 
resulting in non-fulfilment of other functions). On the other hand, if the context- 
dependencies are well-understood, multi-functionality can be exploited to get 
(desired) functional variety from a given architecture.

We say that a system is ‘architecturally flexible’19 if variety in function is high with 
respect to architectural variety (in the limit, every architectural variation would be 
functionally relevant and the ratio of functions to architectures would be unity).20 
This has the potential advantage of allowing a system to realise a greater variety 
of functions with a relatively small number of elements, but also makes it more 
difficult to analyse and predict with respect to these functions.

4.2 Complexity as ill-defined interfaces and shifting system boundaries
A modular system has subsystems (the modules) with well-defined interfaces, 
resulting in a perfect compositional hierarchy; each module can be treated as a 
‘closed’ system. ‘Complexity’ arises when interfaces are ill-defined or changing, 
and the boundaries between the subsystems are constantly changing so 
that subsystems are ‘open’ systems. Of course, as with function-structure 
mappings, this is really a question of characterisation. 

Figure 11. An example of context-
dependent multifunctionality. The same 
component (in this case, the circle, 
C2) realises different functions by 
participating in different architectures, 
even if those architectures realise the 
same function. 
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Context-dependent multi-
functionality. In the table lamp 
example, ‘bulb’ might be seen to 
map to the function of illuminating a 
painting in a dark heated room, but 
might be seen to map to the function 
of providing heat in a cold room that 
is already illuminated. In the rainforest 
ecosystem example, grasshoppers 
might be seen to map to the function 
of reducing the population of certain 
grasses in their natural environment, but 
might be seen to map to the function 
of providing food when removed from 
their natural environment and served 
as a delicacy.
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In a ‘closed system’ characterisation where the system has a well-defined 
boundary, given knowledge of all the possible characterisations within the 
boundary, it would be theoretically possible to define all the relationships 
between all the characterisations. However, when the number of characterisa-
tions and/or relationships between them is extremely large or not yet known, an 
idealised ‘open system’ characterisation may be used. For example, in design 
domains, the realisation of a product requires the realisation of an intricate set 
of connections between physical components, processes, people and organi-
sations; in complex systems science domains, models of entities often consist 
of a web of interdependencies between a large number of system elements.21 
An ‘open system’ characterisation of these scenarios would see the system as 
interacting with itself (as it would with its environment), and would see the inter-
dependencies between the elements of the system as constantly changing.22 

4.3 Complexity as overlapping levels
Non-overlapping hierarchies are those in which a related set of characterisa-
tions do not overlap with respect to their supersystem-subsystem or supertype- 
subtype relationships. In the case of overlapping hierarchies, this no longer 
holds.

4.3.1 Multi-level characterisations and heterarchy
The notion of heterarchy was already introduced in Section 2.1.2. Heterar-
chical characterisations are ones where several hierarchies overlap in a single 
characterisation. These should be distinguished from characterisations which 
integrate multiple non-overlapping hierarchies (e.g. Simon, 1962, Skyttner, 
2005). For pragmatic purposes, heterarchies are decomposed into such non- 
overlapping characterisations, such as in ‘System of Systems’ (SoS) character-
isations (Maier, 1998), which integrate different resolutions without overlap in 
scope.

Heterarchies can represent cases where different domains work together to 
understand a single entity (Alvarez Cabrera et al., 2009; van Beek et al., 2010), 
since different domains might emphasise different system aspects and conse-
quently ‘carve up’ the entity in ways that overlap. Figure 12 shows an example 

Figure 12. A complex systems 
characterisation of entity e where 
functions are mapped to architectures 
specified at different levels. For 
example, [C1*+C2*+C3] maps to FX3 but 
[C1+C2+C3*] maps to FX6. The complexity 
comes from the fact that in order for 
the realisations of all the functions 
to be characterised, different levels 
of abstraction and scope overlap, i.e. 
heterarchy. 
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Multi-level characterisations and 
heterarchy: In the table lamp example, 
‘base with bulb’ maps to the function 
of converting electrical energy to 
light energy, while ‘base with shade’ 
maps to the function of decorating a 
table. ‘Base’ therefore participates 
simultaneously in two lamp subsystems 
which in turn map to different functions. 
In the rainforest ecosystem example, 
‘producers and non-producers’ could 
together be mapped to the function 
of realising the food web, while 
‘producers and abiotic elements’ could 
together map to the function of giving 
‘consumers’ access to energy.
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of a complex systems characterisation of the entity e introduced in Section 2 
based on the heterarchy in Figure 4. In the real world, these different mappings 
might represent characterisations from different domains, e.g. programmers, 
software architects and business analysts working on the same software; 
cognitive psychologists, neuroscientists, cell biologists and molecular biolo-
gists studying the brain. 

4.3.2 Endogenous and exogenous functions
In both design and scientific domains, the functions being considered in  
function-structure mapping often relate to different aspects of the system or 
even to different systems (with different boundaries), resulting in modular archi-
tectures which differ substantially from one another (Holtta & Salonen, 2003). 
For example, in product design, function-structure mappings may be defined 
with respect to the product’s overall function in use (which is typically linked to 
the satisfaction of user needs and preferences), but they can also be defined 
with respect to the product’s manufacture or contribution to firm strategy. In 
Biology, one set of functions might relate to an organism’s survival; another 
might relate to its development or to its role in evolution. 

To generalise, the functions in a function-structure mapping might originate 
from the consideration of different systems, and we can dissociate (i) the system 
for which the architecture is defined (e.g. the product; organism) from (ii) the 
system determining the functions to which this architecture maps (e.g. user; 
ecosystem). In the case of (ii), we might draw a distinction between ‘endoge-
nous’ functions, which are defined with respect to the system in question, and 
‘exogenous’ functions, which are defined with respect to the supersystem in 
which it operates (see Crilly, 2013; 2015).23

The distinction between endogenous and exogenous functions is important 
because they can be associated with different levels of uncertainty. Failure to 
realise endogenous functions lies in improper realisation of the system type 
(e.g. a system part failing). Failure to realise exogenous functions on the other 
hand, can be attributed to the system’s environment, which can change the  
function-structure mapping. For example, changes in user preferences might 
mean that elements of the system that could previously satisfy a particular pref-
erence no longer can; a new set of conditions in an organism’s environment 
might mean that certain functions of the organism no longer map to the biolog-
ical elements they were previously mapped to. If knowledge of the system’s envi-
ronment is inferior to knowledge of the system itself, component types mapping 
to exogenous functions will have higher levels of uncertainty associated with 

Figure 13. Endogenous and exogenous 
functions. The architectures 
[C1+C3+C1] and [C2+C3] map to the 
same endogenous function FX but only 
[C1+C3+C1] maps to the exogenous 
function FY. 
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Endogenous and exogenous 
functions. In the table lamp example, 
both ‘lamp’ and ‘candle’ might emit 
light (endogenous function), but it 
may be the case that only ‘lamp’ 
satisfies the needs of a fire-phobic 
consumer (exogenous function). 
Similarly, in the rainforest ecosystem 
example, both ‘vampire bat’ and 
‘iguana’ reduce the population of 
‘grasshoppers’ (endogenous function) 
but it may be that only ‘iguana’ would 
motivate a human to visit the rainforest 
(exogenous function).
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them in terms of function fulfilment (e.g. user preferences compared to product 
specifications; organism behaviour compared to core metabolic functions).

Figure 13 shows how different architectures might map to the same endoge-
nous function but to different exogenous functions. In many cases, endogenous 
functions and exogenous functions might also be dependent on each other. 
For example, the realisation of the endogenous function FX might be dependent 
on the realisation of FY, or vice versa.

4.3.3 Behavioural robustness and flexibility
Although entity change and entity variety can be seen as two distinct concepts, 
change can also be seen simply as variety observed through time. For example, 
with an atemporal view, demands to the system due to alterations in physical 
conditions or consumer preferences (Dahmus et al., 2001) become the same 
as those made by an environment with a wide range of physical conditions or a 
market with highly diverse consumer preferences.24 

While state transitions describe the behaviour of a system instance, state tran-
sition rules describe the behaviour of a system type.25,26 State transition rules 
define the set of state transitions that are realisable (or that must be realised) by 
instances of the type, thus determining the states that the system can instantiate, 
its ‘state space’, depending on its initial state, which also determines the behav-
ioural trajectories it can take.27 The rules mean that in a given system instance, 
transitions between states can be ‘guided’ and ‘mutually constraining’, so that 
they follow particular ‘trajectories’ depending on previous states. This can result 
in behavioural ‘robustness’ and ‘flexibility’. 

In the same way that change can be recast as variety, we can give system behav-
iour (state transitions) an architectural characterisation. In the case of ‘behav-
ioural robustness’, it is very difficult to get the system to deviate from a particular 
behaviour. In the case of ‘behavioural flexibility’, there are few constraints on the 
states that can be realised by the system, and the architecture of the behaviour 
has few regularities. Such a system would be chaotic and difficult to manage, 
predict or understand. 

Terms such as ‘positive feedback’ and ‘negative feedback’ are used to describe 
the mechanisms which constrain or ‘guide’ behaviour (Ashby, 1962; Heylighen 
& Joslyn, 2001; Babaoglu et al., 2005; Dauscher & Uthmann, 2005; Yamamoto 
et al., 2007). In the case of positive feedback, a particular state or behaviour 
increases the likelihood or extent of states or behaviours of the same type, while 
in the case of negative feedback, it diminishes their extent or likelihood. These 
two mechanisms and interactions between them form the basis for the ‘emer-
gence’ of behaviourally robust ‘self-* properties’ such as self-replication or 
self-assembly (Babaoglu et al., 2005). They also form the basis of homeostasis 
or ‘autopoiesis’, the ability of the system to maintain itself in a viable condition 
(Maturana & Varela, 1980). 

In some complex systems characterisations, the system’s environment can 
put the system into a state in which different rules apply or even directly affect 
which rules apply, thus making different behavioural trajectories available. In 
even more complicated cases, the system can itself influence its environment 
to make it more likely to realise particular states, which then reinforce the above 
effect. Identifying such scenarios is a key endeavour in the complex systems 
sciences.28 The environment might also determine the wider implications of the 

Positive feedback. In the table lamp 
example, “thermal runaway” might 
occur, where an electrical current 
overheats the conductor. The increase 
in heat leads to greater thermal 
conductivity, which leads to more heat 
being generated, which in turn leads 
to even higher thermal conductivity 
(positive feedback). Similarly, in 
the rainforest ecosystem example, 
uncontrolled population growth might 
occur, where individuals continuously 
reproduce to give rise to more 
individuals, who then reproduce to give 
rise to even more individuals (positive 
feedback).

Negative feedback. In the table lamp 
example, as the voltage increases, 
the bulb heats up, which increases 
electrical resistance, which in turn 
reduces the temperature (due to 
reduced current). The reduction in 
temperature then reduces resistance so 
that current flows through at a higher 
rate and heats the filament up again 
(negative feedback). The temperature-
dependent electrical conductivity 
of the filament keeps this oscillatory 
pattern in check so long as the filament 
remains intact and there are no sudden 
surges of electrical current due to 
uncontrolled voltage increase.

Similarly, in the rainforest ecosystem 
example, as the population of a 
species increases, more resources (e.g. 
food, water, space) in its environment 
are required to support it. When the 
number of individuals reaches the 
capacity of the environment to support 
them, fewer individuals will survive and 
reproduce, leading to a decrease in 
population (negative feedback). Then 
when the environment has sufficient 
resources, this will be reversed and 
the population will begin to increase 
again. The capacity of the environment 
keeps this oscillatory pattern in check 
provided there are no intervening 
factors (e.g. entry of competitors or 
predators, disease).
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relationship between functional variety and architectural variety, which in turn 
can be used to further distinguish between different change-related capabili-
ties. For example, flexibility (on our definition) can mean that a system is fragile 
in particular types of environment (which might also be characterised in terms of 
environmental states of a single environment type) because many of the possi-
bilities it has available to it render it non-viable or functionally deficient at some 
other level of description. On the other hand, in a different set of environments 
(which might be characterised as different environmental states of a single envi-
ronment), the system’s flexibility might make it resilient because its functional 
variety allows it to survive.

Architectural robustnesss/flexibility and behavioural robustness/flexibility 
address different aspects of complexity. In the case of architectural robust-
ness and flexibility, it is the relationship between architecture (which might be 
the architecture of a system, system type, state or behaviour) and function that 
we are concerned with. By contrast, in the case of behavioural robustness and 
flexibility, we are concerned only with the architecture itself (characterised as 
regularities in behaviour). 

The different aspects of complexity introduced in this primer are useful for struc-
turing our understanding of the complexity literature, allowing it to be more easily 
understood and compared (Table 2).
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Table 2. Different notions of complexity 
mapped to the different aspects of 
complexity introduced in this primer. 
The extracts are taken from a special 
issue on Complex Systems published 
by the journal Science (1999) and other 
texts found in Section 2 of Ladyman 
et al.’s (2013) paper, which sought to 
identify the features of complex systems

Extract

“To us, complexity means that we have structure with variations.” 
(Goldenfeld & Kadanhoff, 1999: p.87)

“In one characterization, a complex system is one whose evolution is very 
sensitive to initial conditions or to small perturbations, one in which the 
number of independent interacting components is large, or one in which 
there are multiple pathways by which the system can evolve. Analytical 
descriptions of such system typically require nonlinear differential 
equations.” (Whitesides & Ismagilov, 1999, p: 89)

“A second characterization is more informal; that is, the system is 
“complicated” by some subjective judgement and is not amenable to 
exact description, analytical or otherwise.” (Whitesides & Ismagilov, 1999: 
p. 89)

“In a general sense, the adjective “complex” describes a system or 
component that by design or function or both is difficult to understand 
and verify… complexity is determined by such factors as the number of 
components and the intricacy of conditional branches, the degree of 
nesting, and the types of data structures.” (Weng et al., 1999: p.92)

“Complexity theory indicates that large populations of units can self-
organize into aggregations that generate pattern, store information, and 
engage in collective decision-making.” (Parrish & Edelstein-Keshet, 1999: 
p.99)

“Complexity in natural landform patterns is a manifestation of two key 
characteristics. Natural patterns form from processes that are non-linear, 
those that modify the properties of the environment in which they operate 
or that are strongly coupled; and natural patterns form in systems that are 
open, driven from equilibrium by the exchange of energy, momentum, 
material, or information across their boundaries.” (Werner, 1999: p.102)

“A complex system is literally one in which there are multiple interactions 
between many different components.” (Rind, 1999: p.105)

“Common to all studies on complexity are systems with multiple elements 
adapting or reacting to the pattern these elements create.” (Arthur, 1999: 
p.107)

“In recent years the scientific community has coined the rubric ‘complex 
system’ to describe phenomena, structure, aggregates, organisms, 
or problems that share some common theme: (i) They are inherently 
complicated or intricate…; (ii) they are rarely completely deterministic; 
(iii) mathematical models of the system are usually complex and 
involve non-linear, ill-posed, or chaotic behaviour; (iv) the systems are 
predisposed to unexpected outcomes (so-called emergent behaviour).” 
(Foote, 2007: p.410)

“Complexity starts when causality breaks down” (Nature Editorial, 2009).
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5. CONCLUSIONS

This primer has introduced a domain-neutral framework for understanding the 
relationships between different aspects of complexity and modularity in different 
systems characterisations (see Section 2). We defined three core aspects of 
modularity (structural encapsulation, function-structure mapping, and inter-
facing) and two further abstractions from them (function-driven encapsulation 
and interface compatibility) (Section 3). These were then explicitly related to 
different aspects of complexity (Section 4).

Table 3 summarises how different aspects of complexity relate to more funda-
mental systems constructs and to the different aspects and abstractions of 
modularity. The extent to which an entity is considered to be a ‘complex system’ 
or a ‘modular system’ depends on how the entity is characterised. Systemati-
cally relating different aspects of complexity to different aspects of modularity 
permits complex systems problems to be characterised and re-characterised 
in different ways to find suitable solutions. It also allows methods from different 
domains to be applied to similar problems that might otherwise seem unrelated 
to each other. In particular, we point to the following opportunities for system 
design to leverage existing methods (some drawn from the design context, 
others from scientific contexts).

• Methodologies from Design permitting the systematic characterisation of the 
relationship between architectural variety and functional variety in a product 
family at different levels (e.g. ‘design for variety’, Martin & Ishii, 2002) could be 

Table 3. Different complex systems 
characterisations related to different 
aspects and abstractions of modularity 
(non-complex systems characterisations). 
The relevant sections of the present primer 
are listed in the columns to the right.

Aspects of complexity Section System characterisations, Aspect(s)  Section 
  and abstraction(s) of modularity

Open systems characterisation,  4.2 Structural encapsulation,  3.11 
shifting system boundaries,   interfacing, interface compatibility. 3.1 
ill-defined interfaces.   3.2.2

Multi-structural function realisation,  4.1.1 Function-structure mapping, 3.1.2 
architectural robustness, evolvability.  function-driven encapsulation. 3.2.1

Context-dependent multi- 4.1.2 Function-structure mapping, 3.1.2 
functionality, architectural flexibility  function-driven encapsulation. 3.2.1

Heterarchy, multi-level  2.1.2 Composition, classification, levels,  2.1.1 
representations 4.3.1 hierarchy. 2.1.2

Endogenous and  4.3.2 Composition, classification, levels,  2.1.1 
exogenous functions  hierarchy, function-structure mapping,  2.1.2 
  function-driven encapsulation. 3.1.2

Behavioural robustness,   4.3.3 Composition, classification, levels,  2.1.1 
emergence, self-organisation.  hierarchy, architecture, functions,  2.1.2 
  properties, behaviours, states 2.2.1 
   2.2.2 
   2.2.3 
   4.3.2

If we look back through our notes about 
the table lamp and the rainforest 
ecosystem examples, we can now see 
that entities which we might have at 
first thought of as inherently modular or 
complex can actually be characterised 
as either or both.
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used to analyse the relationship between architectural variety and functional 
variety of non-designed entities. By generalising the notion of types, archi-
tectures and functions, we would be able to include both designed and non- 
designed system elements within the same characterisation.

• Techniques for exploring system states in the Complex Systems sciences, 
such as agent-based modelling (Bonabeau, 2002; Axelrod, 2006) could 
be used to understand the costs and benefits of different architectures with 
respect to different functions. When a large number of architectural configu-
rations are possible, being able to simulate them and analyse the functional 
implications of certain family groupings would provide more solid justification 
for making architectural decisions at product, product family and even product 
portfolio levels. In addition, for systems with both designed and non-designed 
elements, we would be able to make better decisions about initialisation states 
and interventions that would help ‘guide’ the system into adopting certain 
architecturally characterised states with desirable properties.

• Community detection and clustering techniques (Palla, 2005 ; Newman, 2006; 
Lancichinetti & Fortunato, 2009; Fortunato & Castellano, 2012) applied in the 
Complex Systems sciences could be used to discover different potential 
product or component ‘family’ groupings with respect to different functions. 

• Static architectural ‘patterns’ and dynamic ‘behavioural motifs’ could be 
shared across domains and application contexts.29 The domain-neutral 
nature of our framework would provide a basis for analysing dynamic archi-
tectures structurally to identify further trends and commonalities between 
them. These could be generalised to higher-level design principles and guide-
lines for designers working on products and problems with complex systems 
characterisations. In turn, these might be further specialised and adapted for 
different application contexts.

In both design and scientific contexts, the challenge posed by ‘complex 
systems’ comes from having to integrate multiple overlapping characterisations. 
Those engineering new and emerging technologies are often tackling systems 
with ill-defined mappings between architectures and their functionally relevant 
properties. Similarly, those working in the complex systems sciences often 
struggle to integrate multiple models of a system with overlapping hierarchies, 
resulting in heterarchical characterisations. The domain-neutral framework we 
have introduced here allows complex systems problems to be expressed in 
multiple ways so that the insights, methods and techniques drawn from different 
domains and application contexts can be appropriately applied to the problems 
they are most suited to. More fundamentally, being able to characterise and 
re-characterise entities in different ways encourages the development of inno-
vative solutions that arise from adopting and adapting the methods and tech-
niques of other disciplines and problem domains.
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 1.  We use the term ‘stance’ here in the same 
way that Dennett (1987) has previously 
used that term. Dennett describes the 
way in which people take different stances 
towards entities when predicting their 
behaviour (e.g. the physical stance, the 
design stance and the intentional stance).

 2.  SysML standards are open source and are 
periodically revised. See http://www.sysml.
org

 3. CML is developed as part of the Compass 
project, whose goal is to integrate different 
engineering notations and methods 
to support the building of Systems of 
Systems. See http://www.compass-re-
search.eu/index.html 

 4.  In (Checkland, 1988; Colombo & Cascini, 
2014), the term ‘holon’ is used.

 5.  We are aware that the deeper semantics, 
ontological status and metaphysical 
implications of these two relationships 
is not uncontroversial (see, for example 
(Chisholm, 1973; Cleve, 1986) on the 
composition relationship, and (Tait, 1967; 
Zalta, 1983; Zemach, 1992) on the super-
type-subtype and type-‘instance’ rela-
tionship); our definitions in this case serve 
simply as pragmatic working definitions 
to keep the discussion closer to everyday 
discourse. They do not imply a formal, onto-
logical or metaphysical distinction between 
types and instances (instances can be 
seen simply as the entities at the bottom 
of type hierarchies). However, it should be 
emphasised that while instances and types 
‘point to’ entities in the world and charac-
terisations, they should not themselves 
be identified with the entities and charac-
terisations. We can therefore say that a 
given type is associated with a particular 
characterisation or set of characterisations 
(e.g. a particular architecture or a particular 
set of functional requirements), but it is 
not the characterisation itself (in the case 
of instances, it should be obvious that the 
sequence of words ‘an instance of a chair 
(type)’ is not the chair itself). 

 6.  In domain mapping matrix terminology, 
these different aspects are also known as 
different “domains”.

 7.  The term “domain” is also used to refer 
to these different aspects of systems, 
e.g. domain mapping matrices represent 
mappings (e.g. Danilovic & Sandkull, 2005) 
between two different aspects of a system. 

 8. At the same time, since we make no 
assumptions about the nature of the 
elements themselves, if these are functions, 
then the system architecture will define 

relationships between them. In this case 
though, in the system architecture we would 
not then map these functions (the elements) 
to other functions just as we would not map 
physical components to functions or a 
system composed of physical components. 
The practice in design domains of relating 
functions through function decomposition 
and function commonality (Jiao & Tseng, 
1999a; Jiao et al., 2007) can be seen as 
examples of giving functions architectural 
characterisations. Similarly, in scientific 
domains such as neuroscience, functions 
are often realised by different physical 
structures or spatio-temporal activation 
patterns (Coltheart, 1999; Bishop & McAr-
thur, 2005). In such cases, scientists talk 
about two distinct architectures – a ‘phys-
ical’ architecture (equivalent in this case 
to the system architecture), which relates 
the components and subsystems, and a 
functional architecture, which may map 
to different physical architectures. As we 
shall discuss in Section 4, distinguishing 
between different architectures and being 
able to relate them to each other gives us a 
basis for precisely characterising certain 
forms of complexity (architecturally-based 
forms of complexity). For example, we can 
think of a system architecture as being 
‘degenerate’ (non-modular) with respect 
to the system’s functional architecture but 
still allow that the functional architecture 
is modular with respect to some other 
functional architecture (or indeed another 
system architecture).

 9.  We are aware of other definitions of ‘archi-
tecture’ that do include references to 
function, such as those found in (Ulrich, 
1995; Baldwin & Clark, 2000; Mikkola & 
Gassmann, 2003; Chen & Liu, 2005), where 
the product architecture refers to the 
scheme by which functions of a product 
are allocated to its physical components. 
In the manufacturing literature, there are 
also definitions of architecture that include 
reference to the entire product portfolio 
(a product portfolio consists of a set of 
product families), which consists of the 
union of the product architectures of all 
members in the product family; this defines 
the function-component mapping of the 
entire product family (Zamirowski & Otto, 
1999; Dahmus et al., 2001).

 10.  See also (Pahl & Beitz, 1996; Umeda and 
Tomiyama, 1997; Hubka, 1982) for more 
details on function decomposition. We 
are also aware of discussions about the 
formal validity of functional decomposi-
tion. For example, it has been shown that 
the composition relation does not always 
meet all the formal requirements of the 

composition part-whole relationship given 
by mereology (Vermaas, 2013). However, 
since our framework does not define the 
deep semantics of such relationships, we 
consider this debate outside the scope of 
this primer. Indeed, without making formal 
semantic assumptions, we can even permit 
dependencies and flows between functions 
such as those found between information 
processing functions in the model in (Smedt 
et al., 1996) or the function ‘chain’ for a 
screwdriver in (Stone et al., 2000).

 11.  Note that saying a property is statically or 
atemporally expressed does not mean that 
it is itself static or does not have temporal 
extension, only that its characterisation 
does not include a dynamic aspect. For 
example, a system can be said to be ‘in a 
state of change’, which obviously refers 
to a property which is dynamic, but does 
not include the dynamic aspect in the 
characterisation. By contrast, saying that 
a system ‘went from one state of change to 
another state of change’ (as in the case of 
‘epoch shifts’ in product lifecycles (Ross & 
Rhodes, 2007; Ross et al., 2008) or ‘regime 
shifts’ in ecosystems (Gunderson & Holling, 
2001)) would count as a behaviour since the 
dynamic aspect is included in the charac-
terisation. 

 12.  For example, in (Sanchez, 2000), the 
following types of interfaces are distin-
guished: (i) attachment interfaces, which 
define how one component physically 
attaches to another (this is similar to the 
snap-to-fit perspective taken above); (ii) 
spatial interfaces that define the physical 
space (dimensions and position) that a 
component occupies in relation to other 
components; (iii) transfer interfaces that 
define the way one component transfers 
electrical or mechanical power, fluid, a 
bitstream, or other primary flow; (iv) control 
and communication interfaces that define 
the way that one component informs 
another of its current state and the way that 
that other component communicates a 
signal to change the original component’s 
current state; (v) environmental interfaces 
that define the effects, often unintended, 
that the presence or functioning of one 
component can have on the functioning 
of another (e.g., through the generation of 
heat, magnetic fields, vibrations, corrosive 
vapors, and so forth); (vi) ambient inter-
faces that define the range of ambient use 
conditions (ambient temperature, humidity, 
elevation, and so on) in which a compo-
nent is intended to perform. In (Sanchez, 
2000), there are also user interfaces that 
define specific ways in which users will 
interact with a product, but we exclude this 

Notes
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seventh type here because it involves a 
system-level rather than component-level 
of description (i.e. it concerns the interface 
between the system type and user rather 
than between component types within the 
system type). Of course, we could treat the 
system type and user as component types 
of the user-product supersystem, but this 
brings us back to talking about within- 
system interactions. At the same time, we 
are sensitive to the subtler issues that arise 
when addressing systems involving both 
human and ‘technical’ components (Kroes 
et al., 2006).

 13. We also acknowledge the fact that the 
distinction between function and prop-
erty is not always straightforward, e.g. a 
function might be precisely to deliver a 
particular property or behaviour.

 14. Of course, in most cases, it is likely that 
function-driven encapsulation also implies 
property-driven encapsulation (since it is 
by virtue of realising certain properties that 
structures map to particular functions), but 
they can still be considered independently. 

15. Component types with the same interface 
compatibilities are also referred to as 
‘module variants’, ‘module types’ or even 
simply ‘modules’ (Galsworth, 1994).

16. The distinction between types and 
instances introduced in Section 2 becomes 
important in discussions of ‘sharing’. 
Sharing between component instances 
equates to a particular component inter-
acting with several other components, while 
sharing between component types refers 
to a particular type of component being 
able to exist in many different system types. 

 17. Some firms may even have product ‘port-
folios’, where different families might share 
either or both architectures and component 
types (Zamirowski & Otto, 1999; Dahmus et 
al., 2001). In (Mikkola & Gassmann, 2003), a 
‘substitutability factor’ is introduced which 
quantifies the impact of substitutability 
of component types by estimating the 
number of product families made possible 
by the average number of interfaces of 
components for a function.

 18. In design domains, methodologies and 
indices have been introduced to quantify 
the adaptability, flexibility and robustness 
of product lines (see e.g. Gu et al., 2009) 
by analysing the potential for architectural 
variety. Similarly, in scientific domains, 
methods and techniques exist to conduct 
analyses of the similarities and differences 
between different viable entities (e.g. geno-
types of a species).

 19. Flexibility can also mean fragility if the 
majority of functions to which the architec-
tures map are architectures with negative 
consequences. 

 20. In the product design context, a ‘design 
for variety’ (DFV) framework (Martin & Ishii, 

2002) has been introduced which permits a 
more systematic treatment of the relation-
ship between architectural and functional 
variety. Within this framework, the ‘flexibil-
ity’/’robustness’ axis is represented by the 
Generational variety index (GVI), which is 
a measure of the amount of redesign effort 
required for future designs of the product 
while the Coupling index (CI) represents 
the degree of coupling among product 
elements (how ‘modular’ the architecture 
is).

 21. Agent- and equation-based models are 
used to explore the different possible 
system behaviours.

 22. Open systems characterisations are 
those where the system itself can change 
structure, i.e. not only do dependen-
cies exist between elements, but which 
elements depend on each other can 
change. In (Giavitto & Michel, 2001), such 
open systems characterisations are said 
to be ‘dynamical systems with a dynam-
ical structure’. ‘Non-linear time variant 
systems’ and ‘stochastic non-linear time 
variant systems’ are also means of charac-
terising open systems.

 23. Using function in one or other of these 
ways has precedent in the earliest works 
of design theory (see review in Winsor & 
MacCallum, 1994: pp. 166–167). More 
recently, many variants of this conceptual 
distinction have been proposed, including 
device-centric functions and environment- 
centric functions (Chandrasekaran & 
Josephson, 2000), action functions and 
purpose functions (Deng, 2002) and 
internal functions and external functions 
(Gzara et al., 2003).

 24. We are not denying the fact that often, 
changes in a system in response to 
changes in its environment also alter 
the system’s capabilities with respect to 
future changes in requirements (e.g. a firm 
that was agile in the past may be unable 
to handle today’s rapidly changing tech-
nological landscape because it is now a 
global conglomerate organisation that is no 
longer agile). Rather, we are separating out 
the issue of being able to handle different 
requirements from a system’s identity. For 
example, we do not make the distinction 
between the ‘spatial’ and temporal dimen-
sion of the environment made in (Heydari & 
Dalili, 2014).

 25. In the Function Behaviour Stucture (FBS) 
framework defined in (Gero, 1990; Gero & 
Mc Neill, 1998) and the Structure Behaviour 
Function framework (SBF) defined in (Goel 
& Chandrasekaran, 1989; Goel et al., 2009; 
Vattam et al., 2011), ‘structure’ can refer 
to a state type, architecture and/or their 
concrete realisation.

 26. The term ‘transition’ is general enough so 
that it need not require change in system 
state, but it does require that change can 

be observed somewhere; this might be 
change in the system’s environment or 
the passing of time. We also try to avoid 
reference to time as a dimension in its own 
right so as to accommodate different inter-
pretations of time, such as the Newtonian 
(the passing of time is itself a behaviour) 
versus the relativistic (time realised through 
behaviours, see, e.g. Callender, 2011).

 27. Many sophisticated techniques exist for 
specifying state transition rules, such 
as petri nets (Weyns & Holvoet, 2002) or 
state charts (Kimiaghalam et al., 2002; 
Stamatopoulou et al., 2007), but a detailed 
review is outside the scope of this primer.

 28. For example, see (Ford & Lerner, 1992; 
West-Eberhard, 2003; Bar-Yam, 2004; 
Schlosser & Wagner, 2004; Powell et al., 
2005; Hornberg et al., 2006; Roth & Cointet, 
2010).

 29. Recently, there have been significant 
efforts in both systems engineering 
(Ingram et al., 2014) and synthetic biology 
(Agapakis & Silver, 2009; Agapakis, 2011) 
to find appropriate representations of such 
‘patterns’ so that they might be better 
shared within the domain.
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