
Chih-Chun Chen and Nathan Crilly

A PRIMER ON THE DESIGN AND SCIENCE OF COMPLEX SYSTEMS

FROM MODULARITY
TO EMERGENCE

CUED/C-EDC/TR.166
Engineering Design Centre
Department of Engineering

OVERVIEW

Electrical networks, flocking birds, transportation hubs, weather patterns,
commercial organisations, swarming robots... Increasingly, many of the
systems that we want to engineer or understand are said to be ‘complex’. These
systems are often considered to be intractable because of their unpredictability,
non-linearity, interconnectivity, heterarchy and ‘emergence’. Such attributes are
often framed as a problem, but can also be exploited to encourage systems to
efficiently exhibit intelligent, robust, self-organising behaviours. But what does
it mean to describe systems as complex? How do these complex systems differ
from the more easily understood ‘modular’ systems that we are familiar with?
What are the underlying similarities between different systems, whether modular
or complex? Answering these questions is a first step in approaching the design
and science of complexity. However, to do so, it is necessary to look beyond
the specifics of any particular system or field of study. We need to consider the
fundamental nature of systems, looking for a common way to view ostensibly
different phenomena.

This primer introduces a domain-neutral framework and diagrammatic scheme
for characterising the ways in which systems are modular or complex. Rather
than seeing modularity and complexity as inherent attributes of systems, we
instead see them as ways in which those systems are characterised by those
who are interested in them. The framework is not tied to any established mode
of representation (e.g. networks, equations, formal modelling languages) nor
to any domain-specific terminology (e.g. ‘vertex’, ‘eigenvector’, ‘entropy’).
Instead, it consists of basic system constructs and three fundamental attrib-
utes of modular system architecture, namely structural encapsulation, function-
structure mapping and interfacing. These constructs and attributes encourage
more precise descriptions of different aspects of complexity (e.g. emergence,
self-organisation, heterarchy). This allows researchers and practitioners from
different disciplines to share methods, theories and findings related to the
design and study of different systems, even when those systems appear super-
ficially dissimilar.

Publication details
Chen, C.-C. and Crilly, N. (2016) ‘From modularity to emergence: a primer on the design and
science of complex systems’. Technical Report CUED/C-EDC/TR.166. University of Cambridge,
Department of Engineering. ISSN 0963-5432. http://dx.doi.org/10.17863/CAM.4503

Licenced as Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Acknowledgements
This work was funded by the UK’s Engineering and Physical Sciences Research Council
(EP/K008196/1). Document designed by Design Science / design-science.co.uk.

Cover image
Starlings flock around an electricity pylon in the small village of Rigg in the Scottish Borders. Tens
of thousands of these birds collectively exhibit spectacular murmations but their interaction with
the power lines also cause local outages. Two types of system are at play here: one biological,
the other technical. Either of these systems can be seen to decompose into discrete ‘modules’
that have clear boundaries (birds, pylons) but they can also be seen to integrate into larger
assemblages (flocks, networks). Interactions within and between the assemblages (and across
systems) can result in unanticipated ‘emergence’ and other forms of ‘complex’ behaviour.
(Image credit: Owen Humphreys/PA Images)

The complexity stance | 9

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

Note that when we use the term ‘system’, what we really mean is a system char-
acterisation; we do not make any metaphysical claims about the decomposa-
bility of physical entities. In addition to defining subsystems, components and
supersystems, with respect to a given system, we define an ‘environment’ of the
system as a set of entities and relationships that are not in the set of entities and
relationships constituting the system but that belong to a supersystem of the
system. The difference between ‘the supersystem of s’ and ‘the environment of
s’ is that the supersystem of s includes s, whereas the environment of s does not
(see Figure 1).

Entities can also be characterised at different levels of abstraction. Two elements
can be seen to be different to each other at one level but the same as each other
at another, more abstract level, where they belong to the same class or ‘type’.
Classificatory relationships between characterisations determine which char-
acterisations can be treated as equivalent (see Figure 2).

We define a ‘type’ as a taxonomic group or ‘class’ associated with a set of
subtypes and instances. With respect to a given system type, S,

• A subtype of S is a taxonomic group containing a subset of the entity types,
entity instances and characterisations contained in the set defined by S.

• A supertype of S is a taxonomic group containing a superset of the entity types,
entity instances and characterisations contained in the set defined by S.

• An instance of S is a concrete realisation of S (an entity in the world) which
belongs to the set of entities defined by S.

2.1.2. Hierarchies and heterarchies
The terms ‘level’ and ‘hierarchy’ are frequently found in systems discourse. The
part-whole (composition) and subtype-supertype (classification) relationships
defined above give us a means of more precisely understanding these terms.

Figure 1: In this diagrammatic scheme,
there are different types of entity
(represented by different shapes
and interfaces). Here, C1, C2 and
C3 represent component types and
can be combined to make a system
type SC1+C2+C3. System type SC1+C2 is
a subsystem of SC1+C2+C3. Entity C3
is a component of SC1+C2+C3 but is the
environment of system SC1+C2 (assuming
no other entities exist, otherwise it is just
part of the environment). These basic
aspects of composition apply both to
types and instances of entities.

In a table lamp (SC1+C2+C3), C1 might
refer to the base, C2 to the bulb, and
C3 to the shade. Similarly, in a rainforest
ecosystem (SC1+C2+C3), C1 might refer to
the producers, C2 to the consumers, and
C3 to the abiotic elements. The subsystem
SC1+C2 might refer to the abiotic elements.

Architectural characterisation.
An architectural characterisation of
the lamp system might refer to the way
the lamp base, bulb and lampshade
fit together. An architectural
characterisation of the rainforest
ecosystem might refer to the way the
producers, consumers and abiotic
elements interact with each other.

From modularity to emergence | 3

1. In the main text, we describe
systems (and the ways in which they
can be understood) in abstract terms.
The language is domain-neutral,
allowing the text to relate to many
different systems and the different
disciplines that study them.

2. In the right-hand margins there
are concrete examples relating
to the abstract descriptions in the
main text. Two systems are used
throughout: a table lamp, which is
generally considered to be ‘non-
complex’ and a rainforest ecosystem,
which is generally considered to
be ‘complex’. These examples are
introduced on page 7.

3. The key concepts and constructs
discussed in the main text are
represented with abstract diagrams
that are domain-neutral.

4. Some of the abstract diagrams
are redrawn underneath, translating
them into illustrations of the table
lamp example. This is useful in the
earlier parts of the primer, so that the
‘visual language’ used in the abstract
diagrams can be understood. In
the later parts of the primer, the
concepts are better represented
by the more abstract diagrams but
their relation to the examples is still
discussed in the margin.

HOW TO READ THIS PRIMER

The pages of this primer include four different kinds of content.

From modularity to emergence | 4

 1. INTRODUCTION

In both Engineering and Science, the term ‘complex system’ is used to char-
acterise an entity that is either being designed or observed. This often means
that the system has an analytically challenging number of interacting elements,
which are described at different levels and which need to be understood from
different perspectives. When the relationships between these different levels
and perspectives are not well-defined (or are subject to change), the system can
be seen as exhibiting unexpected behaviours, sometimes referred to as ‘emer-
gence’. Such emergent behaviours might correspond to unanticipated failures or
to robust ‘self-organising’ patterns that can be exploited. It might be tempting to
see emergence, self-organisation and other aspects of complexity as inherent
to some systems. However, this primer makes no such assumption. Instead, our
starting premise is that any system can be described in a multitude of ways. What
distinguishes a complex system from a non-complex system is that we do not
understand that system well enough to realise our objectives. In other words,
‘complexity’ is subjective; it describes the stance that is being taken towards a
system1. That complexity can itself be characterised in many different ways (e.g.
emergence) depending on the different ways in which this shortfall in under-
standing is manifest (e.g. unpredictability).

While ‘complexity’ in the design context has traditionally been cast in a rather
negative light due to the unpredictability it often implies, attempts have also
been made to harness complexity (e.g. as seen in ‘complexity engineering’
(Ottino, 2004) or ‘learning from nature’ (Dressler & Akan, 2010)). The goal has
been to create more efficient systems with desirable change-related proper-
ties, such as adaptability, robustness, resilience and evolvability (discussions
of these properties can be found in (Fricke & Schulz, 2005; McManus & Hast-
ings, 2006; Ross et al., 2008; Ryan et al., 2013; Schoettl & Lindemann, 2014).
In all these cases, concepts of complexity, self-organisation and emergence
become central to design practice. Furthermore, a complex systems perspec-
tive is becoming increasingly common when tackling design and engineering
problems which cut across traditional domain boundaries and involve both
designed and non-designed entities (Chen & Crilly, 2016). There are many
examples of this:

• distributed computational systems and the internet are studied as natural
ecologies (Gao, 2000; Forrest et al., 2005);

• evolutionary design and evolutionary computing study the way selection and
diversification mechanisms operate in different environmental conditions
(fitness landscapes) to give different solution spaces (Bentley, 2002; De Jong,
2002);

• complex sociotechnical systems are characterised as partially designed and
partially evolving (de Weck et al., 2011);

• bio-engineering seeks to design and manufacture artificial systems from
biological substrates (Endy, 2005; Knight, 2005).

Adopting a complex systems perspective, such as in the examples above, often
requires that knowledge be translated across traditional disciplinary bounda-
ries. (In this primer we use the terms ‘discipline’ and ‘domain’ interchangeably,
with them both referring to fields based on subject areas, which have estab-
lished practices, methods, and bodies of knowledge that members of the field’s

From modularity to emergence | 5

community use to further the field, e.g. generating products, obtaining further
knowledge.) However, despite the fact that many disciplines have made signif-
icant contributions to addressing complexity, they rarely benefit from each
others’ methods, tools or insights due to domain-specific terminology and a lack
of explicitness or precision. Within a given context or domain, a lack of explicit
precision in how terms are used often matters less because all those concerned
tend to share similar assumptions (e.g. designers belonging to the same organ-
isation designing the same product, scientists in the same team studying the
same system). Work on rigorously defining complexity-related constructs (e.g.
‘emergence’, ‘self-organisation’) tends to assume a particular representation of
the system (e.g. a network) or consensus on the terminology used to describe
the system (e.g. what the terms ‘element’, ‘component’, ‘subsystem’ mean). The
lack of an idealised, comprehensive and consistent representation that gener-
alises across domains makes it difficult for those working within one domain to
have confidence in their interpretation of the solutions proposed within another
domain (Goldstone & Sakamoto, 2003). This not only limits the dissemination
of useful knowledge, but also increases the likelihood that practitioners from
different domains will mis-interpret or mis-apply each other’s work.

To make the methods, theories and findings from one domain accessible to other
domains, we need to consider different aspects of complexity in domain-neutral
terms and how they relate to more general systems characterisations. To provide
people working in different disciplines and domains with an accessible means
to navigate each other’s work, this primer develops a domain-neutral frame-
work and diagrammatic scheme that relates the notion of ‘complexity’ to more
fundamental attributes of system architecture, namely structural encapsulation,
function-structure mapping and interfacing. These three architectural attributes
also constitute three core aspects of modularity, which is seen by some as the
antithesis of complexity (or as a panacea for complexity). For designers, modular
architectures permit a system to be divided into more manageable parts that can
be developed, produced and modified relatively independently. In other words,
modularity is seen as a way of ‘managing complexity’ by containing it within
well-defined boundaries. For scientists studying complex systems, modularity
offers a way of more manageably understanding the system by conceptually
grouping together system elements, states, or behaviours. Relatively strong
interactions or dependencies exist within modules, whilst relatively weak inter-
actions exist across them.

The framework we develop is not tied to any established mode of representa-
tion (e.g. networks, equations, formal modelling languages) nor to any domain-
specific terminology (e.g. ‘vertex’, ‘eigenvector’, ‘entropy’). However, it does
provide a means of translating between these different formal representations,
as well as between formal representations and natural language descriptions.
The framework also allows more general systems ontologies (e.g. Bunge, 1977,
1979; Goel & Chandrasekaran, 1989; Gero, 1990; Tomiyama et al., 1993) and
systems modelling frameworks (e.g. SysML,2 CML3) to be related to literature on
complexity and modularity. Thus, the framework serves as a reference language
for the discussion of modularity, complexity and other systems constructs, and
the ways in which they are related (as demonstrated in Table 1 and Table 2).

To ensure conceptual explicitness, we include domain-neutral definitions and
diagrammatic representations of the key terms introduced. The objective is by
no means to comprehensively review the literatures relating to systems, modu-
larity or complexity and therefore we do not endeavour to cite all the ‘classic’
works from different domains. Instead, we reference other works mainly to illus-

From modularity to emergence | 6

trate terminological discrepancies or to point the reader to further details on the
examples given. For domain-specific reviews, the reader is advised to consult
introductory texts, on modularity in design (e.g. Ulrich & Eppinger, 1995; Baldwin
& Clark, 2000; Gershenson et al., 2003); modularity in science (Newman, 2006);
complexity in design (Luzeaux et al, 2013; Sheard et al., 2015); complexity in
science (Mitchell, 2009; Ladyman et al., 2013); and system characterisations
generally (Meadows & Wright, 2008).

The primer is structured as follows. Section 2 introduces a framework for char-
acterising systems, focusing on characterisations that are particularly pertinent
to design domains and scientific domains. The framework also defines compo-
sition and classification relationships, which form the basis for levels, hierar-
chies and heterarchies. Section 3 identifies three core aspects of modularity:
structural encapsulation, function-structure mapping and interfacing. Based
on these, two abstractions are introduced: function-driven encapsulation and
interface compatibility. Section 4 uses the systems characterisation framework
(introduced in Section 2) and the aspects and abstractions of modularity (intro-
duced in Section 3) to characterise different aspects of complexity. Section 5
concludes the primer by summarising the relationships between the different
aspects of modularity and complexity.

From modularity to emergence | 7

A table lamp is a device found in
people’s homes that converts electrical
energy to light. It is a system made
up of a light bulb, lamp base, and

A rainforest ecosystem is a self-sustaining
organisation found in high rainfall areas.
It is a system made up of producers (e.g.
trees, fern and moss), non-producers
(e.g. grasshoppers, iguanas and vampire
bats), and abiotic elements (e.g. water,
sun and minerals). The non-producers

can be divided into primary consumers
(which eat the producers) or secondary
consumers (which eat the primary
consumers). In order for the rainforest
ecosystem to sustain itself, the producers,
non-producers and abiotic elements must
all interact with each other in specific

ways. For example, there must be
sufficient numbers of producers to feed
the primary consumers, and sufficient
numbers of secondary consumers
to keep the populations of primary
consumers in check so that they do not
consume too many of the producers.

lampshade. In order for the table lamp
to work, the bulb must be compatible
with the lamp base in terms of its
attachment mechanism (e.g. bayonet,

screw) and wattage (e.g. 60W, 100W).
The shade must also be attached for
the system to be complete.

From modularity to emergence | 8

2. CHARACTERISING SYSTEMS

To discuss different aspects of complexity and modularity without being tied to
the assumptions that particular domains make about systems, we need to have
a set of domain-neutral constructs and terms (Chen & Crilly, 2016). We use the
term ‘characterisation’4 to refer to any representation, model, specification or
description of an entity. Indeed, even calling an entity a ‘system’ indicates that
a certain stance is being taken towards it; the entity is being characterised as a
system. By its very nature, a systems characterisation of an entity assumes it can
be characterised in multiple ways, each of which emphasise different elements
or aspects, reflecting different perspectives and purposes. Within a given
context, characterisations are often reified by the community who apply them
(Whitehead, 1919) so that a particular characterisation of an entity is treated as
the entity itself or as being inherent to the entity.

For the purposes of this primer, we define a ‘system’ as a set of entities and
relationships, where the relationships are connections or interactions between
the entities (for a review of systems definitions see Skyttner, 2005: pp. 57–58;
Veeke et al., 2008: p. 9). We call the entities in the system the ‘elements’ of the
system, which might be considered ‘components’ or ‘subsystems’ with respect
to the system, as defined below (of course, these elements might themselves
be considered systems in some other characterisation). In order to avoid confu-
sion between cases where we are referring to an entity ‘in the world’ and cases
where we are referring to a characterisation of an entity in the world, we use the
term ‘instance’ to refer to the former and ‘type’ to refer to the latter.5 (By ‘entity
in the world’ we mean a concrete realisation, but this need not be physical. For
example, a process being executed or a procedure being adopted would count
as entities in the world within the context of certain system characterisations.)
This characterisation might include system architecture, design specifications,
functions, behaviour, and so on.

2.1. Composition, classification and levels
In terms of the relationships between entities, we can distinguish between two
formal relationships, ‘compositional’ (part-whole) relationships, and ‘classifica-
tory’ (subtype-type) relationships. These two relationships provide the basis for
defining ‘levels’ and ‘hierarchies’ (see Section 2.1.2).

2.1.1. Composition and classification
A composition relationship implies an entity (the ‘whole’) that can be broken
down into a set of further entities (the ‘parts’). The term ‘element’ itself implies
a composition relationship between the element and the system. However,
different sets of a system’s elements can also have part-whole relationships with
each other. We use the terms ‘subsystem’, ‘component’ and ‘supersystem’ to
characterise such relationships. These are relational terms that only make sense
when defined with respect to each other and with respect to a given characteri-
sation (see Figure 1). With respect to a given system, s,

• a subsystem of s is a subset of the entities and relationships in s;
• a component of s is an entity in s that cannot be further decomposed;
• a supersystem of s is a superset of the entities and relationships in s.

From modularity to emergence | 9

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

Note that when we use the term ‘system’, what we really mean is a system char-
acterisation; we do not make any metaphysical claims about the decomposa-
bility of physical entities. In addition to defining subsystems, components and
supersystems, with respect to a given system, we define an ‘environment’ of the
system as a set of entities and relationships that are not in the set of entities and
relationships constituting the system but that belong to a supersystem of the
system. The difference between ‘the supersystem of s’ and ‘the environment of
s’ is that the supersystem of s includes s, whereas the environment of s does not.

Entities can also be characterised at different levels of abstraction. Two elements
can be seen to be different to each other at one level but the same as each other
at another, more abstract level, where they belong to the same class or ‘type’.
Classificatory relationships between characterisations determine which char-
acterisations can be treated as equivalent (see Figure 2).

We define a ‘type’ as a taxonomic group or ‘class’ associated with a set of
subtypes and instances. With respect to a given system type, S,

• a subtype of S is a taxonomic group containing a subset of the entity types,
entity instances and characterisations contained in the set defined by S;

• a supertype of S is a taxonomic group containing a superset of the entity types,
entity instances and characterisations contained in the set defined by S;

• an instance of S is a concrete realisation of S (an entity in the world) which
belongs to the set of entities defined by S.

2.1.2. Hierarchies and heterarchies
The terms ‘level’ and ‘hierarchy’ are frequently found in systems discourse. The
part-whole (composition) and subtype-supertype (classification) relationships
defined above give us a means of more precisely understanding these terms.
Implicit in the classification relationship is the ‘resolution’ of the characterisation

Figure 1. In this diagrammatic scheme,
there are different types of entity
(represented by different shapes
and interfaces). Here, C1, C2 and
C3 represent component types and
can be combined to make a system
type SC1+C2+C3. System type SC1+C2 is
a subsystem of SC1+C2+C3. Entity C3
is a component of SC1+C2+C3 but is the
environment of system SC1+C2 (assuming
no other entities exist, otherwise it is just
part of the environment). These basic
aspects of composition apply both to
types and instances of entities.

In a table lamp SC1+C2+C3, C1 might
refer to the base, C2 to the bulb, and
C3 to the shade. Subsystem SC1+C2 might
refer to the ‘bulb with base’ part of the
table lamp. Similarly, in a rainforest
ecosystem SC1+C2+C3, C1 might refer to
the producers, C2 to the consumers, and
C3 to the abiotic elements. The subsystem
SC1+C2 might refer to the biotic elements.

From modularity to emergence | 10

Figure 2. In this diagrammatic scheme,
component types (outlined shapes)
can be represented at two levels of
abstraction: with stars or without stars,
where stars represent some feature of
the component. These types can also
be instantiated (solid shapes). Where
components are viewed at a level of
abstraction that makes stars visible,
there are two options: one star or two
stars. Here, two different components
are depicted, c2* and c2** (lower-case).
Components c2* and c2** are instances
of component types C2* and C2** (upper-
case), both of which are a subtype of
C2. As such, c2* and c2** are also both
instances of C2. These basic aspects
of classification apply to components,
systems, subsystems, supersystems
and environments.

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

More specific characterisations of bulb
(C2) can be given, such as 60W bulb
and 100W bulb. Similarly, it is possible
to give more specific characterisations
of rainforest non-producers (C2).
For example, we might use the kind
of rainforest to distinguish between
tropical rainforest non-producers
(C2*) and temperate rainforest non-
producers (C2**). These could then
be used to refer to a particular set
of tropical and temperate rainforest
producers respectively, e.g. c2* might
refer to the non-producers currently
living in a tropical rainforest in
Queensland, and c2** could refer to
the non-producers currently living in
a temperate rainforest in Alaska.

From modularity to emergence | 11

(also known as ‘granularity’ or ‘level of abstraction’), which is the set of distinc-
tions that can be made between the elements. Implicit in the composition rela-
tionship is what is known as the ‘scope’ of the characterisation, which is the set
of elements involved (see Ryan, 2007 for a more detailed discussion of ‘scope’
and ‘resolution’).

We define level as a specification of both the scope and resolution of a charac-
terisation. For example, the level for the system type SC1*+C2*+C3* is defined by the
scope of C1*+C2*+C3* and the resolution of SC1*+C2*+C3* as a subtype of SC1+C2+C3.
Given the definition of ‘level’, a (clean) hierarchy is defined as a set of related
characterisations where the levels do not overlap. A ‘classification hierarchy’ is
a structure in which if one element is the subtype of another element, it cannot
also be its supertype. A ‘compositional hierarchy’ is a structure in which, if one
element is the part of another element, that other element cannot also be a part
of the first. For example, in SC1*+C2*+C3*, the component type C2* is related to the
system type SC1*C2*C3* in a compositional hierarchy and to the component type
C2 in a classification hierarchy (see Figure 3).

Figure 3. An example of a (clean)
hierarchy. C2 is related to SC1+C2 in
compositional hierarchy, and C2* is
related to SC1*+C2* in compositional
hierarchy. C2* is related to C2 in
classificatory hierarchy, and SC1*+C2*
is related to SC1+C2 in classificatory
hierarchy.

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

In this diagram all the compositional
and classificatory relationships
are straightforward. For example,
‘bulb’ (C2) has a straightforward
subsystem relationship with ‘base with
bulb’ (SC1+C2) and a straightforward
supertype relationship with ‘60W
bulb’ (C2*). Similarly, ‘rainforest non-
producers’ (C2) has a straightforward
subsystem relationship with ‘biotic
elements of the rainforest’ (SC1+C2),
and a straightforward supertype
relationship with ‘tropical rainforest
non-producers’ (C2*).

From modularity to emergence | 12

In the case of complex systems characterisations, multiple hierarchies overlap in
a single characterisation. This is what is referred to as a ‘heterarchy’ (McCulloch,
1945, Gunji & Kamiura, 2004; Sasai & Gunji, 2008), ‘panarchy’ (Gunderson &
Holling, 2001) or ‘entangled hierarchy’ (Palla et al., 2005) and can be represented
by hypernetworks (Johnson, 2007; Chen et al., 2009). Figure 4 depicts a heter-
archy that contrasts with the hierarchy described above. We discuss heterarchy
further in Section 4.3.1.

2.2. Aspects and mapping relationships
As well as composition and classification relationships between different
systems characterisations, there are also mapping relationships. These are
used to relate characterisations of different aspects6 of the system, e.g. func-
tions, properties, behaviour, architecture.7 This section considers three aspects
of systems that are important in Design and Science: ‘architecture’, ‘functions’
and ‘properties’. The pervasiveness of these three concepts is evidenced by the
existence of several ontologies relating them, both in design domains (e.g., Goel
& Chandrasekaran, 1989; Gero, 1990; Tomiyama et al., 1993) and in scientific
domains (e.g., Bunge, 1977; 1979; Wand & Weber, 1990).

2.2.1. Architecture
We define a ‘system architecture’ as a characterisation of a system in terms of
compositional relationships between its elements, where the simplest possible
architecture is a single component type. These definitions keep the characteri-
sation of a system’s structure distinct from the mapping relationships between
its structure and function,8 and is consistent with several definitions and discus-
sions of architecture in the literature (e.g. Simon, 1962; Alexander, 1964; Soft-
ware Engineering Standards Committee, 2000; Maier & Rechtin, 2009).9

Although the terms ‘architecture’ and ‘structure’ are typically thought of in terms
of spatial relationships between components (e.g. configuration design in the
manufacturing literature, Jiao & Tseng, 1999b), we intend ‘architecture’ to be
used in a more general sense here to refer to any relationships (e.g. temporal,
logical, social, causal) that might exist between a set of entities. Our definition is
therefore general enough to accommodate architectures defined at high levels

Figure 4. An example of a heterarchy.
Although there is a classificatory
hierarchical relationship between C2
and C2*, the relationship between SC1*+C2*
and SC1+C2 cannot be characterised by
classificatory hierarchy alone. The
relationship between C2 and SC1*+C2,
and between C2* and SC1*+C2 cannot
be characterised by compositional
hierarchy alone.

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

Heterarchy. Not all the relationships
between the different characterisations
are straightforward classificatory
or compositional relationships. For
example, the relationship between
‘bulb’ (C2) and ‘base with 60W bulb’
system (SC1+C2*), is not a straightforward
subsystem-supersystem one. This is
because ’60W bulb’ is specified at
a level of detail that exceeds that
of the specification of ‘base’ (which
might have variants that are or are
not compatible with 60W bulbs).
Similarly, the relationship between
‘rainforest non-producers’ (C2) and
‘rainforest producers with tropical
rainforest non-producers’ (SC1+C2*) is
not straightforward (as again, the
entities that make up the system are
specified at different levels).

Architectural characterisation.
An architectural characterisation of
the lamp system might refer to the way
the lamp base, bulb and lampshade
fit together. An architectural
characterisation of the rainforest
ecosystem might refer to the way the
producers, consumers and abiotic
elements interact with each other.

From modularity to emergence | 13

of abstraction with respect to their applications, such as reference architectures
(Holtta & Salonen, 2003; Cloutier et al., 2010) and product family architectures
(Cloutier et al., 2010). It is also worth noting that while these high level architec-
tures define a set of constructs with which to decompose certain system types,
they themselves are system types with a particular architecture (in the same way
that grammars are as much linguistic systems as are the languages defined by
those grammars).

2.2.2. Functions
The term ‘function’ is much discussed across various literatures on how systems
operate (see reviews in Erden et al., 2008; Crilly, 2010; Houkes & Vermaas, 2010;
Preston, 2009; Vermaas & Dorst, 2007), and it is not always easy to see how a
single definition can apply across domains (e.g. to both artefacts and organ-
isms). Generally, however, functions describe what a system should do in serving
some entity, such as satisfying the goals of some agent (e.g. users, designers)
or permitting the system to survive and reproduce (e.g. in an ecosystem or
market). We leave debate over the nuances of such definitions to other authors
and instead focus on clarifying the relationship that functional characterisations
have to other kinds of characterisation. Even though the realisation or ‘fulfilment’
of a function by an entity is dependent on its properties and architecture, the
functional characterisation of the entity can be considered independently of
these other aspects.

It is also worth emphasising that we do not preclude associations being made
between functions and other aspects of systems. For example, a functional
requirement of a product might be that it has to adhere to a particular archi-
tecture or possesses certain specific properties. Furthermore, functions can
themselves be treated as entities in their own right and given compositional
characterisations (the ‘subfunctions’ it is composed of or decomposes into) and
classificatory characterisations (the functions it is seen to be a variant of and
which variants it itself has).10

2.2.3. Properties
We use ‘property’ as an umbrella term for anything that can be said to be true
of an entity (this might even include having a particular architecture or function).
When this is expressed statically (or atemporally11), we call the property a ‘state’
(Tomiyama et al., 1993). When it is expressed dynamically (through time), we use
the term ‘behaviour’, or more precisely, ‘state transitions’ (Gero, 1990; Kam et
al., 2001) and ‘state transition rules’ (see also Section 4.3.3).

Function-based characterisation.
A function-based characterisation
of the lamp system might be to
provide users with diffused light. A
function-based characterisation of the
rainforest ecosystem might be to sustain
populations of particular species.

States. The states of the lamp system
might include being “on” or “off” while
the states of a rainforest ecosystem
might include being in “wet season” or in
“dry season”.

State transitions. The state transitions
for the lamp system would be “on ¦
off”, “off ¦ on”, with the state transition
rules being “if circuit broken, on ¦ off”,
“if circuit formed, off ¦ on”. The state
transitions for the ecosystem would be
“wet season ¦ dry season” and “dry
season ¦ wet season”, with the state
transition rules “if rainfall exceeds x,
dry season ¦ wet season”, “if rainfall
drops below x, wet season ¦ dry
season”.

Some of these characterisations might
seem “unnatural” when applied to the
rainforest ecosystem example. For
example, it seems strange to see the
relationships between biotic and abiotic
rainforest elements as architectural,
to assign the rainforest ecosystem the
function of sustaining a population
of species or to see “dry season” and
“wet season” as states. The reason why
these characterisations feel a lot more
natural in the table lamp example is the
human-centric nature of the way the
function is defined, and from which the
other characterisations (architectural
and property-based) are derived.

From modularity to emergence | 14

3. ASPECTS AND ABSTRACTIONS
OF MODULARITY

A system characterisation with a straightforward compositional hierarchy
describes components and subsystems as interacting (or interfacing) with each
other in well-defined, well-understood ways and is said to be ‘modular’. Although
there exist many different notions of ‘modularity’, they can be understood and
distinguished on the basis of three fundamental attributes of system architec-
ture: structural encapsulation, function-structure mapping, and interfacing
(Section 3.1). Table 1 illustrates how these fundamental attributes can be used to
consolidate different definitions of modularity found in the literature. From these
three fundamental architectural attributes, we can derive two further abstrac-
tions, function-driven encapsulation and interface compatibility (Section 3.2).

3.1. Three core aspects of modularity
The three fundamental attributes of system architecture that we associate with
modularity are represented diagrammatically in Figure 5. In this primer, we treat
these as the three core aspects of modularity and require that all three of them
be satisfied for a set of system elements to be collectively characterised as a
‘module’:

• structural encapsulation means that the elements can collectively be treated
as a single encapsulated component;

• one-to-one function-structure mapping means that the set of elements
collectively map to a particular function;

• interfacing means that as a collective, the set of elements has well-defined
interactions with other system elements.

3.1.1. Structural encapsulation
We use the term ‘structural encapsulation’ to refer to the grouping of related
system elements, i.e. subsystems, into units that can then be treated as compo-
nent types at some level of abstraction. Structural encapsulation also implies
‘interface decoupling’ since it allows the relationships between a set of related
system elements to be considered independently from its interactions with
other system elements.

The table lamp system is usually
considered to be more modular
than the rainforest ecosystem. This
is because the interactions between
the bulb, lamp base and lampshade
are well-defined with respect to their
fulfilment of the lamp’s function, while
in the case of the rainforest ecosystem,
the interactions between the producers,
consumers and abiotic elements are
less well-defined, and the interactions
are often inter-dependent.

Structural encapsulation. In the table
lamp example, ‘bulb’ can be treated
as a structurally encapsulated unit, and
so can ‘base with bulb’ (which includes
‘bulb’). In the rainforest ecosystem
example, ‘consumers’ can be treated
as a structurally encapsulated unit,
and so can ‘biotic elements’. This latter
example might feel more forced
because we are not used to seeing sets
of species as an encapsulated unit,
but this is purely due to our habits in
characterisation. In a similar way, most
of us are not used to seeing a light bulb
as a collection of different types of
elements or atoms.

Figure 5. Three aspects of modularity:
structural encapsulation (the module is
defined by its composition and structure
relating its elements to each other, as
indicated by the block arrow), function-
structure mapping (the module is defined
by the collective mapping of a structured
set of elements to a function – in this
case, F1, as indicated by the arrow), and
interfacing (the module is defined by how
a set of elements interacts with other
systems, as indicated by the dotted lines).

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

From modularity to emergence | 15

3.1.2. Function-structure mapping
We use the term ‘function-structure mapping’ to refer to the mapping between
a set of related system elements (i.e. a subsystem) and a function. This struc-
tured set of system elements can then be encapsulated into a component type
because they are collectively associated with the function. We refer to such
encapsulation as ‘function-driven’ (see Section 3.2.1 below).

3.1.3 Interfacing
We define the term ‘interface’ as an aspect of the element that allows it to
interact with another element or set of other elements in the same system. For
those designing physical products it might be most natural to think of interfaces
in terms of physical structure or geometric fit. However, interfaces can also be
realised in nonphysical ways and the interactions need not be determined by
geometry. Examples of non-physical interfaces include standards, protocols,
agreements, languages, signals and processes.

Which aspect(s) of an element is treated as its interface depends on the char-
acterisation adopted, which defines the set of elements with which interac-
tion occurs.12 This might also mean that multiple interfaces are identified for an
element. Indeed, in some cases the interfaces might even be determined by
function-structure mapping. For example, what makes the geometry of a given
system element its interface might be the requirement of physical fit for the
formation of a composite structure to realise a mechanical or chemical function.
In such cases, there is an inextricable link between structure and function.

The three aspects of modularity introduced in this primer are useful for struc-
turing our understanding of the modularity literature, allowing it to be more easily
understood and compared (Table 1).

Function-structure mapping. In the
table lamp example, ‘base with bulb’
could map to the function of converting
electrical energy to light energy, and
‘lampshade’ could map to the function
of diffusing the light emitted. In the
rainforest ecosystem example, ‘biotic
elements’ might map to the function of
maintaining the food web, and ‘abiotic
elements’ could map to the function of
enabling the biotic elements to survive.

Interfacing. In the table lamp
example, ‘bulb’ interacts with ‘lamp
base’ via ‘bulb-base interface’. In
the rainforest ecosystem example,
‘producers’ and ‘non-producers’
interact with each other via ‘eaten-
eating interface’.

 Aspect of modularity Examples from literature

 SE F-SM I

×

Abstract characterisation:
• A module is a physical or conceptual grouping of components (Jiao & Tseng, 1999b).
• Modules contain a high number of components that have minimal dependencies upon

and similarities to other components not in the module (Gershenson et al., 1999).

Network characterisation:
• A subsystem is a module when the number of edges within the subsystem is much higher than

the expected number of edges derived from an equivalent random network model with the same
number of elements and similar distribution of links between elements with no modular structure
(Newman, 2010).

In manufacturing and product design:
• The most modular architecture is one in which each functional element of the product is

implemented by exactly one chunk (subassembly) and in which there are few interactions
between chunks. Such a modular architecture allows a design change to be made to one
subassembly without affecting the others (Ulrich & Eppinger, 1995).

In software design:
• There should be no access to, informational flow to, or inter-activity between modules (George

& Leathrum, 1985). Modular programming has developed coding techniques which “(1) allow one
module to be written with little knowledge of the code in another module, and (2) allow modules to
be reassembled and replaced without reassembly of the whole system.” (Parnas, 1972: p. 1053).

Table 1. Different notions of modularity
related to the three aspects of modularity
introduced in this primer: Structural
encapsulation (SE), Function-structure
mapping (F-SM) and Interfacing (I).

From modularity to emergence | 16

 Aspect of modularity Examples from literature

 SE F-SM I

Abstract characterisation
• The term ‘modular’ refers to the minimisation of the number of functions per component (Ishii et

al., 1995).

In manufacturing and product design
• ‘Conceptual’ modules perform the same functions even if they have different physical

compositions (Otto & Wood, 2001).

In manufacturing and product design
• Product modularity is defined in terms of “(1) Similarity between the physical and functional

architecture of the design and (2) Minimization of incidental interactions between physical
components.” (Ulrich & Tung, 1991: p. 73). Therefore a modular product or subassembly
has a one-to-one mapping from functional elements in the function structure to the physical
components of the product (Ulrich, 1995).

• A module is a set of components grouped together in a physical structure and by some
characteristic based on the designer’s intent (Di Marco et al., 1994; Newcomb et al., 1998).

• A module is a component or group of components that can be removed from the product non-
destructively as a unit, which provides a unique basic function necessary for the product to
operate as desired, and modularity is the degree to which a product’s architecture is composed
of modules with minimal interactions between modules (Allen & Carlson-Skalak, 1998).

• Modularity refers to the “building of complex product or process from smaller subsystems that
can be designed independently yet function together as a whole” (Baldwin & Clark, 1997: p. 84).

• Modularity requires similarity of functional interactions and suitability of inclusion of components
in a module (Huang & Kusiak, 1998).

Abstract characterisation
• A module is a component or subsystem in a larger system that performs specific function(s) and

emerges as a tightly coupled cluster of elements sharing dense intra-module interactions and
sparse inter-module interactions (Sarkar et al., 2013).

In manufacturing and product design
• A module is a group of standard and interchangeable components (Galsworth, 1994).
• Modular systems are those that are constructed from standardised units of dimensions for

flexibility and use (Walz, 1980).

In manufacturing and product design
• A modular product is “a function-oriented design that can be integrated into different systems

for the same functional purpose without (or with minor) modifications” (Chang & Ward, 1995 in
Gershenson et al., 2003: p. 298).

• Modules are groups of components that can easily be re-used or re-manufactured, also
considering material compatibility (Sosale et al., 1997).

In software design
• Modularity refers to “tools for the user to build large programs out of pieces” (Chen, 1987, in

Gershenson et al., 2003: p. 297).

Abstract characterisation
• A module is a structurally independent building block of a larger system with fairly loose

connections to the rest of the system. They have well-defined interfaces which allow independent
development of the module as long as the interconnections at the interfaces are retained (Holtta
& Salonen, 2003).

In manufacturing and product design
• Modularity is design with subsystems “that can be assembled and tested prior to integration…

to reduce the time and cost of manufacturing” (Carey, 1997, in Gershenson et al., 2003: p. 298).
• Modularity is using sets of units designed to be arranged in different ways (Belle & Kissinger, 1999).
• Physical adjacency, energy transfer, information transfer and material exchange can be used to

group elements together so they are treated as modules (Pimmler & Eppinger, 1994).

Abstract characterisation
• Modules are cooperative subsystems which (i) can be combined and configured with similar units

to achieve different outcomes; (ii) have one or more well-defined functions that can be tested in
isolation from the system and that (iii) have their main functional interactions within rather than
between modules (Marshall et al., 1998).

Table 1 (continued)

× ×

×

×

× ×

××

×××

From modularity to emergence | 17

3.2 Two abstractions from modularity
From the three core aspects outlined above, we can derive two further abstrac-
tions that also pervade the modularity literature: function-driven encapsulation
and interface compatibility.

3.2.1 Function-driven encapsulation
We use the term ‘function-driven encapsulation’ to describe cases where the
criterion for encapsulation is the fulfilment of a function (see Figure 6). What
connects elements within a group to each other is that they collectively map
to a function, and what makes this set of elements disconnected from other
elements is the fact that these other elements do not participate in the fulfilment
of that function (being ‘connected’ or ‘disconnected’ might also be a matter of
degree, and the mapping to a function is specific to a particular level of abstrac-
tion and scope). Function-driven encapsulation can be seen as one of a set of
many different forms of encapsulation, each of which is distinguished by the
kind of criteria that determines encapsulation. For example, we might also have
property-driven or behaviour-driven encapsulation where elements are seen
as ‘connected’ when they collectively realise a particular property.13 However,
since our definition of modularity is concerned with the relationship between
elements and functions, we require encapsulation to be function-driven.14

We say that a system architecture is ‘completely modular’ if every element in
the system belongs to a functional group and fulfilment of the system’s overall
function is completely accounted for by these function-structure mappings (see
Figure 7). In the design and management of systems, encapsulation has been
said to provide a means of ‘managing complexity’ by hiding the intricacies of
certain regions of the system so that characterisations of them can be sepa-
rated from the characterisation of the relationships that exist between them and
other regions of the system.

Function-driven encapsulation.
In the table lamp example, ‘bulb’
can be treated as an encapsulated
unit by virtue of serving the function
of converting electrical energy to
light (F1). In the rainforest ecosystem
example, ‘non-producers’ can be
treated as an encapsulated unit
because they serve the function
of controlling the population of
‘producers’ (F1).

Figure 6. An example of function-
driven encapsulation: the structural
encapsulation of the module is determined
by function-structure mapping.

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

Figure 7. An example of interface
compatibility, leading to a modular
architecture. The system type SC1+C2 has
a completely modular architecture since
all its elements (both C1 and C2) belong
to or constitute modules (M2 and M1,
respectively). In this case, the modules
are defined by function-structure
mapping.

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

From modularity to emergence | 18

3.2.2 Interface compatibility
Interface compatibility refers to the compatibility between different components
of the system. This compatibility might be a matter of degree and characterised
as the strength of interaction. Interface compatibilities between system compo-
nents determine how different groups of system elements are able to interact
with each other, thus providing a characterisation of the system’s architectural
constraints. In a completely modular architecture, since all the elements would
be modules or would belong to modules and hence be encapsulated in compo-
nents, interactions between elements in different components would always
be via their interfaces. Well-defined interfaces permit components and sub-
systems with different structures and functions to occupy the same ‘position’ as
each other in the system.

If all modules (components mapped to functions) in a system had the same
mutually compatible interfaces with each other, there would be no architectural
constraints at the module level since any module would be able to interact with
any other module i.e. architectural degrees of freedom would be maximised,
and every component could be ‘repositioned’. This is known as ‘sectional’
modularity (Ulrich & Tung, 1991; Ulrich, 1995), where every component in
the system has the same set of interfaces. At the other extreme, where inter-
faces minimise architectural degrees of freedom and each component has
a specific ‘position’ or ‘role’ in the system, we have ‘slot’ modularity (Ulrich &
Tung, 1991; Ulrich, 1995). In ‘slot’ modularity, each component has a unique set
of interfaces, which implies that it has a unique set of interactions with other
components in the system and hence can only be located in a single specific
position with respect to them.

Interface compatibilities can provide a means of controlling which parts of the
system can vary. In a given system architecture, different elements of different
types (possibly mapping to different functions) can interact with the same set
of other elements, so long as they have the same interface compatibilities.15 In a
modular architecture (where the system can be decomposed into components
mapped to functions), interface compatibilities determine which components
can be swapped or substituted for each other. The terms ‘component-sharing’,
(Ulrich, 1995) ‘substitution’ (Garud & Kumaraswamy, 1993, Mikkola & Gassmann
2003) and ‘standardisation’ (Miozzo & Grimshaw, 2005) are used in the literature
to refer to cases where, at a particular level of abstraction, different component
types have the same interfaces (i.e. they are compatible with the same set of
other component types).16 This ‘component-sharing’, together with overall
architectural similarity between products, can be the basis for establishing
product ‘families’ (Galsworth, 1994; Ulrich, 1995; Jose & Tollenaere, 2005). The
term ‘component-swapping’ (Ulrich, 1995) is used to refer to cases where, at a
particular level of abstraction, component types are mapped to different func-
tions but have the same interfaces and therefore can be substituted for each
other architecturally (see Figure 8). If these differences in component function
have implications for a product’s overall function, they provide the basis for the
different product variants in product ‘families’.17

Interface compatibility provides us with a formal means of characterising and
analysing architectural variety in terms of elements’ compatibilities with each
other and the different architectural configurations they permit.

Interface compatibility. In the
table lamp example, The bulb is
compatible with the base because it
has a particular type of attachment
mechanism (e.g. screw), which serves as
its interface with the base. Similarly, in
the rainforest ecosystem example, the
non-producers are compatible with the
producers because they have particular
dietary habits which serve as their
interface with the producers.

From modularity to emergence | 19

Figure 8. ‘Component-swapping’
always implies ‘component-sharing’,
and vice versa. When we are taking
the perspective of a component (here,
the octagon) that can interact with a
variety of other entities, the architecture
is characterised as ‘component-
swapping’ (different components can
be swapped ‘in or out’ of the octagon).
When we are taking the perspective of
different entities that can all interact
with the same component (the octagon),
the architecture is characterised as
‘component-sharing’ (the octagon is a
component that can be shared ‘between’
different entities).

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

The table lamp example can be seen
as permitting ‘component-swapping’
or ‘component-sharing’. When we are
taking the perspective of a ‘base’ that
can accommodate a variety of ‘bulbs’
(e.g. different power ratings, shapes),
the architecture is characterised as
‘component-swapping’; when we are
taking the perspective of different
types of ‘bulb’ that are all compatible
with a ‘base’, the architecture is
characterised as ‘component-sharing’.
Similarly, for the rainforest ecosystem
example when we are taking the
perspective of ‘producers’ that satisfy
the dietary requirements of different
species of ‘consumers’, the architecture
is characterised as ‘component-
swapping’; when we are taking the
perspective of the different species of
‘consumer’ whose dietary requirements
are satisfied by the same ‘producers’,
the architecture is characterised as
‘component-sharing’.

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

From modularity to emergence | 20

4. ASPECTS OF COMPLEXITY

The term ‘complexity’ is used in different ways in the design literature and is
often used interchangeably with ‘complicated’. We treat these as two distinct
concepts (as several authors also do, e.g. Sargut & McGrath, 2011). Character-
ising a system as ‘complicated’ is to understand it as having many components,
subsystems and interactions; however, as with a simple system, it is theoreti-
cally possible to map functions to components and subsystems in a one-to-one
fashion, and to describe the interactions between them. By contrast, charac-
terising a system as ‘complex’ is to understand the system in a way that does
not allow this kind of one-to-one mapping or full description of the interactions
between components and subsystems. The three aspects and two abstractions
of modularity discussed above can be used to distinguish between different
aspects of complexity.

4.1 Complexity as non-one-to-one function-structure mappings
Function-driven encapsulation ensures one-to-one mapping between func-
tion and architecture. Complexity arises when, at some level of abstraction, the
mapping is not one-to-one.

4.1.1 Multi-structural function realisation and architectural robustness
We use the term ‘multi-structural function realisation’ to describe cases where a
function maps to more than one architecture (more than one component type).
In Design and Engineering, the possibility of realising a function with different
architectures offers the opportunity for robustness and reduction in cost.
Robustness comes from the fact that if one architecture mapping to a function is
not realised, others may be able to realise it instead. Cost reduction would come
from the fact that the number of components required for a given level of robust-
ness might be lower than if this robustness were achieved through duplication of
components (see Figure 9).

Redundancy through different
architectures. In the table lamp
example, redundancy might be
achieved through duplicating ‘lamp’
(duplicated architecture) or through
having one ‘lamp’ and one ‘candle’.
Similarly, in the rainforest ecosystem
example, redundancy might be
achieved by having either enough
‘iguanas’ to consume ‘grasshoppers’
or by having enough ‘iguanas’ and
‘vampire bats’ to do the same.

Figure 9. Redundancy through
duplicated architectures and distinct
architectures. Top row: Both the
[C1+C2+C3] architecture and the
C4 architecture map to FX. Bottom
left: redundancy in FX is provided by
an architecture with duplication of
[C1+C2+C3]. Bottom right: redundancy
in FX is provided by two distinct
architectural realisations, [C1+C2+C3]
and C4.

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

From modularity to emergence | 21

In Engineering Design, the term ‘principle redundancy’ (Pahl & Beitz, 1996)
describes cases in which multiple architectures realise the same function.
In Biology, the term ‘degeneracy’ describes cases where, when a particular
element is not able to fulfil its function, other means of fulfilling that function
are possible (Tononi et al., 1999; Edelman & Gally, 2001; Whitacre, 2010; Chen
& Crilly, 2014). For example, a function that was previously associated with a
single element might also become distributed among multiple elements.

Compared to duplication, multi-structural function realisation offers a more
robust form of redundancy when the different architectures able to realise the
function have different points of fragility and strength (see Figure 10). On the
other hand, it makes the function-structure mappings harder to analyse, and
when there is system failure, it can be difficult to identify the elements involved.

We say that a system is ‘architecturally robust’ if variety in function is low with
respect to architectural variety (the ratio of the number of functions to the number
of architectures is low). Architectural robustness is positively associated with
evolvability (Whitacre, 2010) since the greater the architectural variation with
respect to a function, the larger the set of possibilities to be selected from, and
the greater the evolvability. Selection pressures can also be characterised in
terms of function realisation. For example, referring back to the architectures
in Figure 9, having both [C1+C2+C3] and C4 as possibilities would make the
system both architecturally robust with respect to FX (see Figure 10) and more
evolvable with respect to FX compared to the case where only one of the archi-
tectures could be realised. If the system found itself in an environment requiring
FX to be realised, there would be a selection pressure in favour of the architecture
[C1+C2+C3]. We might also say that the evolvability of the system with respect to
FX is in virtue of its adaptability with respect to FX. To some extent, this is simply
a question of the level at which we are considering the system. For example, a
production process might permit a change in parts supplier which then allows a
manufacturing firm to resist changes in supplier prices; an organism’s ability to
change its behaviour in response to different temperature conditions allows it to
operate in different environments.18

Figure 10. An example of how multi-
structural function realisation provides
robustness. As in Figure 9, [C1+C2+C3]
and C4 are both mapped to FX. Top
row: C5 prevents the architecture
[C1+C2+C3] from realising FX. Bottom
left: The presence of C4 prevents
[C1+C2+C3]+[C1+C2+C3] from realising
FX. Bottom right: The multi-structural
function realisation architecture of
[C1+C2+C3]+C4 allows it to be more
robust than [C1+C2+C3]+[C1+C2+C3]
with respect to realising FX since it can
do so in the presence of C5.

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

Multi-structural function realisation.
If there is a power cut, then having
‘lamp’ and ‘candle’ would be more
robust than having a pair of ‘lamps’.
Similarly, if there were a disease
affecting only iguanas, it would be
more robust to have both iguanas
and vampire bats to consume the
grasshoppers.

From modularity to emergence | 22

4.1.2 Context-dependent multi-functionality and architectural flexibility
We use the term ‘context-dependent multi-functionality’ to refer to cases where
an architecture maps to different functions based on the wider system archi-
tecture it is part of. In systems terms, this means a subsystem realises different
functions based on which other systems it is connected to (its environment), i.e.
the supersystem it is part of. Figure 11 shows how C2 can be characterised as
context-dependently multi-functional. When it is connected to C1 and [C3+C6],
it realises FY1, and when it is connected to C1 and [C3+C7], it realises FY2.

In design domains, re-purposing of products, product parts and processes
are examples of context-dependent multi-functionality. For example, a steel
rod realises different functions depending on the wider physical structure it is
part of; in software, the same data can have different functions depending on
the sections of the program that they flow into; the biochemical function of a
protein can depend on the other molecules present; the economic impact of one
consumer’s purchase depends on the purchasing activities of other consumers.

When the contexts in which different functions are realised are not well-
understood, functions may be realised unexpectedly or ‘emerge’ (sometimes
resulting in non-fulfilment of other functions). On the other hand, if the context-
dependencies are well-understood, multi-functionality can be exploited to get
(desired) functional variety from a given architecture.

We say that a system is ‘architecturally flexible’19 if variety in function is high with
respect to architectural variety (in the limit, every architectural variation would be
functionally relevant and the ratio of functions to architectures would be unity).20
This has the potential advantage of allowing a system to realise a greater variety
of functions with a relatively small number of elements, but also makes it more
difficult to analyse and predict with respect to these functions.

4.2 Complexity as ill-defined interfaces and shifting system boundaries
A modular system has subsystems (the modules) with well-defined interfaces,
resulting in a perfect compositional hierarchy; each module can be treated as a
‘closed’ system. ‘Complexity’ arises when interfaces are ill-defined or changing,
and the boundaries between the subsystems are constantly changing so
that subsystems are ‘open’ systems. Of course, as with function-structure
mappings, this is really a question of characterisation.

Figure 11. An example of context-
dependent multifunctionality. The same
component (in this case, the circle,
C2) realises different functions by
participating in different architectures,
even if those architectures realise the
same function.

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

Context-dependent multi-
functionality. In the table lamp
example, ‘bulb’ might be seen to
map to the function of illuminating a
painting in a dark heated room, but
might be seen to map to the function
of providing heat in a cold room that
is already illuminated. In the rainforest
ecosystem example, grasshoppers
might be seen to map to the function
of reducing the population of certain
grasses in their natural environment, but
might be seen to map to the function
of providing food when removed from
their natural environment and served
as a delicacy.

From modularity to emergence | 23

In a ‘closed system’ characterisation where the system has a well-defined
boundary, given knowledge of all the possible characterisations within the
boundary, it would be theoretically possible to define all the relationships
between all the characterisations. However, when the number of characterisa-
tions and/or relationships between them is extremely large or not yet known, an
idealised ‘open system’ characterisation may be used. For example, in design
domains, the realisation of a product requires the realisation of an intricate set
of connections between physical components, processes, people and organi-
sations; in complex systems science domains, models of entities often consist
of a web of interdependencies between a large number of system elements.21
An ‘open system’ characterisation of these scenarios would see the system as
interacting with itself (as it would with its environment), and would see the inter-
dependencies between the elements of the system as constantly changing.22

4.3 Complexity as overlapping levels
Non-overlapping hierarchies are those in which a related set of characterisa-
tions do not overlap with respect to their supersystem-subsystem or supertype-
subtype relationships. In the case of overlapping hierarchies, this no longer
holds.

4.3.1 Multi-level characterisations and heterarchy
The notion of heterarchy was already introduced in Section 2.1.2. Heterar-
chical characterisations are ones where several hierarchies overlap in a single
characterisation. These should be distinguished from characterisations which
integrate multiple non-overlapping hierarchies (e.g. Simon, 1962, Skyttner,
2005). For pragmatic purposes, heterarchies are decomposed into such non-
overlapping characterisations, such as in ‘System of Systems’ (SoS) character-
isations (Maier, 1998), which integrate different resolutions without overlap in
scope.

Heterarchies can represent cases where different domains work together to
understand a single entity (Alvarez Cabrera et al., 2009; van Beek et al., 2010),
since different domains might emphasise different system aspects and conse-
quently ‘carve up’ the entity in ways that overlap. Figure 12 shows an example

Figure 12. A complex systems
characterisation of entity e where
functions are mapped to architectures
specified at different levels. For
example, [C1*+C2*+C3] maps to FX3 but
[C1+C2+C3*] maps to FX6. The complexity
comes from the fact that in order for
the realisations of all the functions
to be characterised, different levels
of abstraction and scope overlap, i.e.
heterarchy.

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

Multi-level characterisations and
heterarchy: In the table lamp example,
‘base with bulb’ maps to the function
of converting electrical energy to
light energy, while ‘base with shade’
maps to the function of decorating a
table. ‘Base’ therefore participates
simultaneously in two lamp subsystems
which in turn map to different functions.
In the rainforest ecosystem example,
‘producers and non-producers’ could
together be mapped to the function
of realising the food web, while
‘producers and abiotic elements’ could
together map to the function of giving
‘consumers’ access to energy.

From modularity to emergence | 24

of a complex systems characterisation of the entity e introduced in Section 2
based on the heterarchy in Figure 4. In the real world, these different mappings
might represent characterisations from different domains, e.g. programmers,
software architects and business analysts working on the same software;
cognitive psychologists, neuroscientists, cell biologists and molecular biolo-
gists studying the brain.

4.3.2 Endogenous and exogenous functions
In both design and scientific domains, the functions being considered in
function-structure mapping often relate to different aspects of the system or
even to different systems (with different boundaries), resulting in modular archi-
tectures which differ substantially from one another (Holtta & Salonen, 2003).
For example, in product design, function-structure mappings may be defined
with respect to the product’s overall function in use (which is typically linked to
the satisfaction of user needs and preferences), but they can also be defined
with respect to the product’s manufacture or contribution to firm strategy. In
Biology, one set of functions might relate to an organism’s survival; another
might relate to its development or to its role in evolution.

To generalise, the functions in a function-structure mapping might originate
from the consideration of different systems, and we can dissociate (i) the system
for which the architecture is defined (e.g. the product; organism) from (ii) the
system determining the functions to which this architecture maps (e.g. user;
ecosystem). In the case of (ii), we might draw a distinction between ‘endoge-
nous’ functions, which are defined with respect to the system in question, and
‘exogenous’ functions, which are defined with respect to the supersystem in
which it operates (see Crilly, 2013; 2015).23

The distinction between endogenous and exogenous functions is important
because they can be associated with different levels of uncertainty. Failure to
realise endogenous functions lies in improper realisation of the system type
(e.g. a system part failing). Failure to realise exogenous functions on the other
hand, can be attributed to the system’s environment, which can change the
function-structure mapping. For example, changes in user preferences might
mean that elements of the system that could previously satisfy a particular pref-
erence no longer can; a new set of conditions in an organism’s environment
might mean that certain functions of the organism no longer map to the biolog-
ical elements they were previously mapped to. If knowledge of the system’s envi-
ronment is inferior to knowledge of the system itself, component types mapping
to exogenous functions will have higher levels of uncertainty associated with

Figure 13. Endogenous and exogenous
functions. The architectures
[C1+C3+C1] and [C2+C3] map to the
same endogenous function FX but only
[C1+C3+C1] maps to the exogenous
function FY.

c2* c2**

C2

Fig 1

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Fig 9

Fig 11

Fig 13

Fig 10

Fig 12

SC1+C2

C1 C2 C3

SC1+C2+C3

interfacingfunction-structure mapping

F1

structural encapsulation

‘component sharing’‘component swapping’

[C1+C2+C3]

[C1+C2+C3] [C1+C2+C3]

[C1+C2+C3]

C4

C4

FX FX

FX

FY

FY1 in [C1+C2+C3+C6]

C6

system boundary of S[C1+C2+C3]

FX

FZ

SC1+C2 C2

C2*

is
a

su
bt

yp
e

of

FX

system boundary of SC4

does not map to FZ

e

FX1FX2FX3

FX4FX5FX6

C5

prevents [C1+C2+C3]
from performing FX

Fig 2 C2*

is
a

su
pe

rty
pe

 o
f

is a subsystem of

is a supersystem of

is a subsystem of

is a supersystem of

C2**

SC1*+C2*

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

is
a

su
bt

yp
e

of

is
a

su
pe

rty
pe

 o
f

SC1+C2*
?

? ? ? ?

?

?

?

C2

C2*SC1*+C2

F1

SC1+C2 or SM1+M2 C2C1

F2 + F1 F1F2

M2 M1

FY

FY2 in [C1+C2+C3+C7]

C7

Endogenous and exogenous
functions. In the table lamp example,
both ‘lamp’ and ‘candle’ might emit
light (endogenous function), but it
may be the case that only ‘lamp’
satisfies the needs of a fire-phobic
consumer (exogenous function).
Similarly, in the rainforest ecosystem
example, both ‘vampire bat’ and
‘iguana’ reduce the population of
‘grasshoppers’ (endogenous function)
but it may be that only ‘iguana’ would
motivate a human to visit the rainforest
(exogenous function).

From modularity to emergence | 25

them in terms of function fulfilment (e.g. user preferences compared to product
specifications; organism behaviour compared to core metabolic functions).

Figure 13 shows how different architectures might map to the same endoge-
nous function but to different exogenous functions. In many cases, endogenous
functions and exogenous functions might also be dependent on each other.
For example, the realisation of the endogenous function FX might be dependent
on the realisation of FY, or vice versa.

4.3.3 Behavioural robustness and flexibility
Although entity change and entity variety can be seen as two distinct concepts,
change can also be seen simply as variety observed through time. For example,
with an atemporal view, demands to the system due to alterations in physical
conditions or consumer preferences (Dahmus et al., 2001) become the same
as those made by an environment with a wide range of physical conditions or a
market with highly diverse consumer preferences.24

While state transitions describe the behaviour of a system instance, state tran-
sition rules describe the behaviour of a system type.25,26 State transition rules
define the set of state transitions that are realisable (or that must be realised) by
instances of the type, thus determining the states that the system can instantiate,
its ‘state space’, depending on its initial state, which also determines the behav-
ioural trajectories it can take.27 The rules mean that in a given system instance,
transitions between states can be ‘guided’ and ‘mutually constraining’, so that
they follow particular ‘trajectories’ depending on previous states. This can result
in behavioural ‘robustness’ and ‘flexibility’.

In the same way that change can be recast as variety, we can give system behav-
iour (state transitions) an architectural characterisation. In the case of ‘behav-
ioural robustness’, it is very difficult to get the system to deviate from a particular
behaviour. In the case of ‘behavioural flexibility’, there are few constraints on the
states that can be realised by the system, and the architecture of the behaviour
has few regularities. Such a system would be chaotic and difficult to manage,
predict or understand.

Terms such as ‘positive feedback’ and ‘negative feedback’ are used to describe
the mechanisms which constrain or ‘guide’ behaviour (Ashby, 1962; Heylighen
& Joslyn, 2001; Babaoglu et al., 2005; Dauscher & Uthmann, 2005; Yamamoto
et al., 2007). In the case of positive feedback, a particular state or behaviour
increases the likelihood or extent of states or behaviours of the same type, while
in the case of negative feedback, it diminishes their extent or likelihood. These
two mechanisms and interactions between them form the basis for the ‘emer-
gence’ of behaviourally robust ‘self-* properties’ such as self-replication or
self-assembly (Babaoglu et al., 2005). They also form the basis of homeostasis
or ‘autopoiesis’, the ability of the system to maintain itself in a viable condition
(Maturana & Varela, 1980).

In some complex systems characterisations, the system’s environment can
put the system into a state in which different rules apply or even directly affect
which rules apply, thus making different behavioural trajectories available. In
even more complicated cases, the system can itself influence its environment
to make it more likely to realise particular states, which then reinforce the above
effect. Identifying such scenarios is a key endeavour in the complex systems
sciences.28 The environment might also determine the wider implications of the

Positive feedback. In the table lamp
example, “thermal runaway” might
occur, where an electrical current
overheats the conductor. The increase
in heat leads to greater thermal
conductivity, which leads to more heat
being generated, which in turn leads
to even higher thermal conductivity
(positive feedback). Similarly, in
the rainforest ecosystem example,
uncontrolled population growth might
occur, where individuals continuously
reproduce to give rise to more
individuals, who then reproduce to give
rise to even more individuals (positive
feedback).

Negative feedback. In the table lamp
example, as the voltage increases,
the bulb heats up, which increases
electrical resistance, which in turn
reduces the temperature (due to
reduced current). The reduction in
temperature then reduces resistance so
that current flows through at a higher
rate and heats the filament up again
(negative feedback). The temperature-
dependent electrical conductivity
of the filament keeps this oscillatory
pattern in check so long as the filament
remains intact and there are no sudden
surges of electrical current due to
uncontrolled voltage increase.

Similarly, in the rainforest ecosystem
example, as the population of a
species increases, more resources (e.g.
food, water, space) in its environment
are required to support it. When the
number of individuals reaches the
capacity of the environment to support
them, fewer individuals will survive and
reproduce, leading to a decrease in
population (negative feedback). Then
when the environment has sufficient
resources, this will be reversed and
the population will begin to increase
again. The capacity of the environment
keeps this oscillatory pattern in check
provided there are no intervening
factors (e.g. entry of competitors or
predators, disease).

From modularity to emergence | 26

relationship between functional variety and architectural variety, which in turn
can be used to further distinguish between different change-related capabili-
ties. For example, flexibility (on our definition) can mean that a system is fragile
in particular types of environment (which might also be characterised in terms of
environmental states of a single environment type) because many of the possi-
bilities it has available to it render it non-viable or functionally deficient at some
other level of description. On the other hand, in a different set of environments
(which might be characterised as different environmental states of a single envi-
ronment), the system’s flexibility might make it resilient because its functional
variety allows it to survive.

Architectural robustnesss/flexibility and behavioural robustness/flexibility
address different aspects of complexity. In the case of architectural robust-
ness and flexibility, it is the relationship between architecture (which might be
the architecture of a system, system type, state or behaviour) and function that
we are concerned with. By contrast, in the case of behavioural robustness and
flexibility, we are concerned only with the architecture itself (characterised as
regularities in behaviour).

The different aspects of complexity introduced in this primer are useful for struc-
turing our understanding of the complexity literature, allowing it to be more easily
understood and compared (Table 2).

From modularity to emergence | 27

Table 2. Different notions of complexity
mapped to the different aspects of
complexity introduced in this primer.
The extracts are taken from a special
issue on Complex Systems published
by the journal Science (1999) and other
texts found in Section 2 of Ladyman
et al.’s (2013) paper, which sought to
identify the features of complex systems

Extract

“To us, complexity means that we have structure with variations.”
(Goldenfeld & Kadanhoff, 1999: p.87)

“In one characterization, a complex system is one whose evolution is very
sensitive to initial conditions or to small perturbations, one in which the
number of independent interacting components is large, or one in which
there are multiple pathways by which the system can evolve. Analytical
descriptions of such system typically require nonlinear differential
equations.” (Whitesides & Ismagilov, 1999, p: 89)

“A second characterization is more informal; that is, the system is
“complicated” by some subjective judgement and is not amenable to
exact description, analytical or otherwise.” (Whitesides & Ismagilov, 1999:
p. 89)

“In a general sense, the adjective “complex” describes a system or
component that by design or function or both is difficult to understand
and verify… complexity is determined by such factors as the number of
components and the intricacy of conditional branches, the degree of
nesting, and the types of data structures.” (Weng et al., 1999: p.92)

“Complexity theory indicates that large populations of units can self-
organize into aggregations that generate pattern, store information, and
engage in collective decision-making.” (Parrish & Edelstein-Keshet, 1999:
p.99)

“Complexity in natural landform patterns is a manifestation of two key
characteristics. Natural patterns form from processes that are non-linear,
those that modify the properties of the environment in which they operate
or that are strongly coupled; and natural patterns form in systems that are
open, driven from equilibrium by the exchange of energy, momentum,
material, or information across their boundaries.” (Werner, 1999: p.102)

“A complex system is literally one in which there are multiple interactions
between many different components.” (Rind, 1999: p.105)

“Common to all studies on complexity are systems with multiple elements
adapting or reacting to the pattern these elements create.” (Arthur, 1999:
p.107)

“In recent years the scientific community has coined the rubric ‘complex
system’ to describe phenomena, structure, aggregates, organisms,
or problems that share some common theme: (i) They are inherently
complicated or intricate…; (ii) they are rarely completely deterministic;
(iii) mathematical models of the system are usually complex and
involve non-linear, ill-posed, or chaotic behaviour; (iv) the systems are
predisposed to unexpected outcomes (so-called emergent behaviour).”
(Foote, 2007: p.410)

“Complexity starts when causality breaks down” (Nature Editorial, 2009).

×

× × ×

×

×

×

×××

×

×

×

×

××××

××

Be
ha

vi
ou

ra
l r

ob
us

tn
es

s,

 e
m

er
ge

nc
e,

 s
el

f-
or

ga
ni

sa
tio

n

O
pe

n
sy

st
em

s

 c
ha

ra
ct

er
is

at
io

n

M
ul

ti-
st

ru
ct

ur
al

 fu
nc

tio
n

 re

al
is

at
io

n

C
on

te
xt

-d
ep

en
de

nt

 m
ul

ti-
fu

nc
tio

na
lit

y

Ar
ch

ite
ct

ur
al

 ro
bu

st
ne

ss
 /

 fl

ex
ib

ili
ty

H
et

er
ar

ch
y

From modularity to emergence | 28

5. CONCLUSIONS

This primer has introduced a domain-neutral framework for understanding the
relationships between different aspects of complexity and modularity in different
systems characterisations (see Section 2). We defined three core aspects of
modularity (structural encapsulation, function-structure mapping, and inter-
facing) and two further abstractions from them (function-driven encapsulation
and interface compatibility) (Section 3). These were then explicitly related to
different aspects of complexity (Section 4).

Table 3 summarises how different aspects of complexity relate to more funda-
mental systems constructs and to the different aspects and abstractions of
modularity. The extent to which an entity is considered to be a ‘complex system’
or a ‘modular system’ depends on how the entity is characterised. Systemati-
cally relating different aspects of complexity to different aspects of modularity
permits complex systems problems to be characterised and re-characterised
in different ways to find suitable solutions. It also allows methods from different
domains to be applied to similar problems that might otherwise seem unrelated
to each other. In particular, we point to the following opportunities for system
design to leverage existing methods (some drawn from the design context,
others from scientific contexts).

• Methodologies from Design permitting the systematic characterisation of the
relationship between architectural variety and functional variety in a product
family at different levels (e.g. ‘design for variety’, Martin & Ishii, 2002) could be

Table 3. Different complex systems
characterisations related to different
aspects and abstractions of modularity
(non-complex systems characterisations).
The relevant sections of the present primer
are listed in the columns to the right.

Aspects of complexity Section System characterisations, Aspect(s) Section
 and abstraction(s) of modularity

Open systems characterisation, 4.2 Structural encapsulation, 3.11
shifting system boundaries, interfacing, interface compatibility. 3.1
ill-defined interfaces. 3.2.2

Multi-structural function realisation, 4.1.1 Function-structure mapping, 3.1.2
architectural robustness, evolvability. function-driven encapsulation. 3.2.1

Context-dependent multi- 4.1.2 Function-structure mapping, 3.1.2
functionality, architectural flexibility function-driven encapsulation. 3.2.1

Heterarchy, multi-level 2.1.2 Composition, classification, levels, 2.1.1
representations 4.3.1 hierarchy. 2.1.2

Endogenous and 4.3.2 Composition, classification, levels, 2.1.1
exogenous functions hierarchy, function-structure mapping, 2.1.2
 function-driven encapsulation. 3.1.2

Behavioural robustness, 4.3.3 Composition, classification, levels, 2.1.1
emergence, self-organisation. hierarchy, architecture, functions, 2.1.2
 properties, behaviours, states 2.2.1
 2.2.2
 2.2.3
 4.3.2

If we look back through our notes about
the table lamp and the rainforest
ecosystem examples, we can now see
that entities which we might have at
first thought of as inherently modular or
complex can actually be characterised
as either or both.

From modularity to emergence | 29

used to analyse the relationship between architectural variety and functional
variety of non-designed entities. By generalising the notion of types, archi-
tectures and functions, we would be able to include both designed and non-
designed system elements within the same characterisation.

• Techniques for exploring system states in the Complex Systems sciences,
such as agent-based modelling (Bonabeau, 2002; Axelrod, 2006) could
be used to understand the costs and benefits of different architectures with
respect to different functions. When a large number of architectural configu-
rations are possible, being able to simulate them and analyse the functional
implications of certain family groupings would provide more solid justification
for making architectural decisions at product, product family and even product
portfolio levels. In addition, for systems with both designed and non-designed
elements, we would be able to make better decisions about initialisation states
and interventions that would help ‘guide’ the system into adopting certain
architecturally characterised states with desirable properties.

• Community detection and clustering techniques (Palla, 2005 ; Newman, 2006;
Lancichinetti & Fortunato, 2009; Fortunato & Castellano, 2012) applied in the
Complex Systems sciences could be used to discover different potential
product or component ‘family’ groupings with respect to different functions.

• Static architectural ‘patterns’ and dynamic ‘behavioural motifs’ could be
shared across domains and application contexts.29 The domain-neutral
nature of our framework would provide a basis for analysing dynamic archi-
tectures structurally to identify further trends and commonalities between
them. These could be generalised to higher-level design principles and guide-
lines for designers working on products and problems with complex systems
characterisations. In turn, these might be further specialised and adapted for
different application contexts.

In both design and scientific contexts, the challenge posed by ‘complex
systems’ comes from having to integrate multiple overlapping characterisations.
Those engineering new and emerging technologies are often tackling systems
with ill-defined mappings between architectures and their functionally relevant
properties. Similarly, those working in the complex systems sciences often
struggle to integrate multiple models of a system with overlapping hierarchies,
resulting in heterarchical characterisations. The domain-neutral framework we
have introduced here allows complex systems problems to be expressed in
multiple ways so that the insights, methods and techniques drawn from different
domains and application contexts can be appropriately applied to the problems
they are most suited to. More fundamentally, being able to characterise and
re-characterise entities in different ways encourages the development of inno-
vative solutions that arise from adopting and adapting the methods and tech-
niques of other disciplines and problem domains.

From modularity to emergence | 30

 1. We use the term ‘stance’ here in the same
way that Dennett (1987) has previously
used that term. Dennett describes the
way in which people take different stances
towards entities when predicting their
behaviour (e.g. the physical stance, the
design stance and the intentional stance).

 2. SysML standards are open source and are
periodically revised. See http://www.sysml.
org

 3. CML is developed as part of the Compass
project, whose goal is to integrate different
engineering notations and methods
to support the building of Systems of
Systems. See http://www.compass-re-
search.eu/index.html

 4. In (Checkland, 1988; Colombo & Cascini,
2014), the term ‘holon’ is used.

 5. We are aware that the deeper semantics,
ontological status and metaphysical
implications of these two relationships
is not uncontroversial (see, for example
(Chisholm, 1973; Cleve, 1986) on the
composition relationship, and (Tait, 1967;
Zalta, 1983; Zemach, 1992) on the super-
type-subtype and type-‘instance’ rela-
tionship); our definitions in this case serve
simply as pragmatic working definitions
to keep the discussion closer to everyday
discourse. They do not imply a formal, onto-
logical or metaphysical distinction between
types and instances (instances can be
seen simply as the entities at the bottom
of type hierarchies). However, it should be
emphasised that while instances and types
‘point to’ entities in the world and charac-
terisations, they should not themselves
be identified with the entities and charac-
terisations. We can therefore say that a
given type is associated with a particular
characterisation or set of characterisations
(e.g. a particular architecture or a particular
set of functional requirements), but it is
not the characterisation itself (in the case
of instances, it should be obvious that the
sequence of words ‘an instance of a chair
(type)’ is not the chair itself).

 6. In domain mapping matrix terminology,
these different aspects are also known as
different “domains”.

 7. The term “domain” is also used to refer
to these different aspects of systems,
e.g. domain mapping matrices represent
mappings (e.g. Danilovic & Sandkull, 2005)
between two different aspects of a system.

 8. At the same time, since we make no
assumptions about the nature of the
elements themselves, if these are functions,
then the system architecture will define

relationships between them. In this case
though, in the system architecture we would
not then map these functions (the elements)
to other functions just as we would not map
physical components to functions or a
system composed of physical components.
The practice in design domains of relating
functions through function decomposition
and function commonality (Jiao & Tseng,
1999a; Jiao et al., 2007) can be seen as
examples of giving functions architectural
characterisations. Similarly, in scientific
domains such as neuroscience, functions
are often realised by different physical
structures or spatio-temporal activation
patterns (Coltheart, 1999; Bishop & McAr-
thur, 2005). In such cases, scientists talk
about two distinct architectures – a ‘phys-
ical’ architecture (equivalent in this case
to the system architecture), which relates
the components and subsystems, and a
functional architecture, which may map
to different physical architectures. As we
shall discuss in Section 4, distinguishing
between different architectures and being
able to relate them to each other gives us a
basis for precisely characterising certain
forms of complexity (architecturally-based
forms of complexity). For example, we can
think of a system architecture as being
‘degenerate’ (non-modular) with respect
to the system’s functional architecture but
still allow that the functional architecture
is modular with respect to some other
functional architecture (or indeed another
system architecture).

 9. We are aware of other definitions of ‘archi-
tecture’ that do include references to
function, such as those found in (Ulrich,
1995; Baldwin & Clark, 2000; Mikkola &
Gassmann, 2003; Chen & Liu, 2005), where
the product architecture refers to the
scheme by which functions of a product
are allocated to its physical components.
In the manufacturing literature, there are
also definitions of architecture that include
reference to the entire product portfolio
(a product portfolio consists of a set of
product families), which consists of the
union of the product architectures of all
members in the product family; this defines
the function-component mapping of the
entire product family (Zamirowski & Otto,
1999; Dahmus et al., 2001).

 10. See also (Pahl & Beitz, 1996; Umeda and
Tomiyama, 1997; Hubka, 1982) for more
details on function decomposition. We
are also aware of discussions about the
formal validity of functional decomposi-
tion. For example, it has been shown that
the composition relation does not always
meet all the formal requirements of the

composition part-whole relationship given
by mereology (Vermaas, 2013). However,
since our framework does not define the
deep semantics of such relationships, we
consider this debate outside the scope of
this primer. Indeed, without making formal
semantic assumptions, we can even permit
dependencies and flows between functions
such as those found between information
processing functions in the model in (Smedt
et al., 1996) or the function ‘chain’ for a
screwdriver in (Stone et al., 2000).

 11. Note that saying a property is statically or
atemporally expressed does not mean that
it is itself static or does not have temporal
extension, only that its characterisation
does not include a dynamic aspect. For
example, a system can be said to be ‘in a
state of change’, which obviously refers
to a property which is dynamic, but does
not include the dynamic aspect in the
characterisation. By contrast, saying that
a system ‘went from one state of change to
another state of change’ (as in the case of
‘epoch shifts’ in product lifecycles (Ross &
Rhodes, 2007; Ross et al., 2008) or ‘regime
shifts’ in ecosystems (Gunderson & Holling,
2001)) would count as a behaviour since the
dynamic aspect is included in the charac-
terisation.

 12. For example, in (Sanchez, 2000), the
following types of interfaces are distin-
guished: (i) attachment interfaces, which
define how one component physically
attaches to another (this is similar to the
snap-to-fit perspective taken above); (ii)
spatial interfaces that define the physical
space (dimensions and position) that a
component occupies in relation to other
components; (iii) transfer interfaces that
define the way one component transfers
electrical or mechanical power, fluid, a
bitstream, or other primary flow; (iv) control
and communication interfaces that define
the way that one component informs
another of its current state and the way that
that other component communicates a
signal to change the original component’s
current state; (v) environmental interfaces
that define the effects, often unintended,
that the presence or functioning of one
component can have on the functioning
of another (e.g., through the generation of
heat, magnetic fields, vibrations, corrosive
vapors, and so forth); (vi) ambient inter-
faces that define the range of ambient use
conditions (ambient temperature, humidity,
elevation, and so on) in which a compo-
nent is intended to perform. In (Sanchez,
2000), there are also user interfaces that
define specific ways in which users will
interact with a product, but we exclude this

Notes

From modularity to emergence | 31

seventh type here because it involves a
system-level rather than component-level
of description (i.e. it concerns the interface
between the system type and user rather
than between component types within the
system type). Of course, we could treat the
system type and user as component types
of the user-product supersystem, but this
brings us back to talking about within-
system interactions. At the same time, we
are sensitive to the subtler issues that arise
when addressing systems involving both
human and ‘technical’ components (Kroes
et al., 2006).

 13. We also acknowledge the fact that the
distinction between function and prop-
erty is not always straightforward, e.g. a
function might be precisely to deliver a
particular property or behaviour.

 14. Of course, in most cases, it is likely that
function-driven encapsulation also implies
property-driven encapsulation (since it is
by virtue of realising certain properties that
structures map to particular functions), but
they can still be considered independently.

15. Component types with the same interface
compatibilities are also referred to as
‘module variants’, ‘module types’ or even
simply ‘modules’ (Galsworth, 1994).

16. The distinction between types and
instances introduced in Section 2 becomes
important in discussions of ‘sharing’.
Sharing between component instances
equates to a particular component inter-
acting with several other components, while
sharing between component types refers
to a particular type of component being
able to exist in many different system types.

 17. Some firms may even have product ‘port-
folios’, where different families might share
either or both architectures and component
types (Zamirowski & Otto, 1999; Dahmus et
al., 2001). In (Mikkola & Gassmann, 2003), a
‘substitutability factor’ is introduced which
quantifies the impact of substitutability
of component types by estimating the
number of product families made possible
by the average number of interfaces of
components for a function.

 18. In design domains, methodologies and
indices have been introduced to quantify
the adaptability, flexibility and robustness
of product lines (see e.g. Gu et al., 2009)
by analysing the potential for architectural
variety. Similarly, in scientific domains,
methods and techniques exist to conduct
analyses of the similarities and differences
between different viable entities (e.g. geno-
types of a species).

 19. Flexibility can also mean fragility if the
majority of functions to which the architec-
tures map are architectures with negative
consequences.

 20. In the product design context, a ‘design
for variety’ (DFV) framework (Martin & Ishii,

2002) has been introduced which permits a
more systematic treatment of the relation-
ship between architectural and functional
variety. Within this framework, the ‘flexibil-
ity’/’robustness’ axis is represented by the
Generational variety index (GVI), which is
a measure of the amount of redesign effort
required for future designs of the product
while the Coupling index (CI) represents
the degree of coupling among product
elements (how ‘modular’ the architecture
is).

 21. Agent- and equation-based models are
used to explore the different possible
system behaviours.

 22. Open systems characterisations are
those where the system itself can change
structure, i.e. not only do dependen-
cies exist between elements, but which
elements depend on each other can
change. In (Giavitto & Michel, 2001), such
open systems characterisations are said
to be ‘dynamical systems with a dynam-
ical structure’. ‘Non-linear time variant
systems’ and ‘stochastic non-linear time
variant systems’ are also means of charac-
terising open systems.

 23. Using function in one or other of these
ways has precedent in the earliest works
of design theory (see review in Winsor &
MacCallum, 1994: pp. 166–167). More
recently, many variants of this conceptual
distinction have been proposed, including
device-centric functions and environment-
centric functions (Chandrasekaran &
Josephson, 2000), action functions and
purpose functions (Deng, 2002) and
internal functions and external functions
(Gzara et al., 2003).

 24. We are not denying the fact that often,
changes in a system in response to
changes in its environment also alter
the system’s capabilities with respect to
future changes in requirements (e.g. a firm
that was agile in the past may be unable
to handle today’s rapidly changing tech-
nological landscape because it is now a
global conglomerate organisation that is no
longer agile). Rather, we are separating out
the issue of being able to handle different
requirements from a system’s identity. For
example, we do not make the distinction
between the ‘spatial’ and temporal dimen-
sion of the environment made in (Heydari &
Dalili, 2014).

 25. In the Function Behaviour Stucture (FBS)
framework defined in (Gero, 1990; Gero &
Mc Neill, 1998) and the Structure Behaviour
Function framework (SBF) defined in (Goel
& Chandrasekaran, 1989; Goel et al., 2009;
Vattam et al., 2011), ‘structure’ can refer
to a state type, architecture and/or their
concrete realisation.

 26. The term ‘transition’ is general enough so
that it need not require change in system
state, but it does require that change can

be observed somewhere; this might be
change in the system’s environment or
the passing of time. We also try to avoid
reference to time as a dimension in its own
right so as to accommodate different inter-
pretations of time, such as the Newtonian
(the passing of time is itself a behaviour)
versus the relativistic (time realised through
behaviours, see, e.g. Callender, 2011).

 27. Many sophisticated techniques exist for
specifying state transition rules, such
as petri nets (Weyns & Holvoet, 2002) or
state charts (Kimiaghalam et al., 2002;
Stamatopoulou et al., 2007), but a detailed
review is outside the scope of this primer.

 28. For example, see (Ford & Lerner, 1992;
West-Eberhard, 2003; Bar-Yam, 2004;
Schlosser & Wagner, 2004; Powell et al.,
2005; Hornberg et al., 2006; Roth & Cointet,
2010).

 29. Recently, there have been significant
efforts in both systems engineering
(Ingram et al., 2014) and synthetic biology
(Agapakis & Silver, 2009; Agapakis, 2011)
to find appropriate representations of such
‘patterns’ so that they might be better
shared within the domain.

From modularity to emergence | 32

Agapakis, C. M. (2011) Biological Design
Principles for Synthetic Biology. Unpublished
doctoral dissertation, Harvard University, The
Division of Medical Sciences.

Agapakis, C. M. & Silver, P. A. (2009)
Synthetic biology: exploring and exploiting
genetic modularity through the design
of novel biological networks, Molecular
bioSystems 5 (7), 704–713.

Alexander, C. (1964) Notes on the Synthesis
of Form. Harvard University Press, Boston,
MA.

Allen, K. R. & Carlson-Skalak, S. (1998)
Defining product architecture during
conceptual design. In ASME Design
Engineering Technical Conference 1998,
Atlanta, GA.

Alvarez Cabrera, A. A., Erden, M. S. &
Tomiyama, E. T. (2009) On the Potential of
Function-Behavior-State (FBS) Methodology
for the Integration of Modeling Tools. In
Proceedings of the 19th CIRP Design
Conference - Competitive Design, Cranfield
University.

Arthur, W. B. (1999) Complexity and the
economy. Science 284 (5411), 107–109.

Ashby, W. R. (1962) Principles of the self-
organising system. In H. von Foerster & G. W.
Zopf (ed.), Principles of Self-Organisation (pp.
108–118). Pergamon, New York, NY.

Axelrod, R. (2006) “Agent-Based Modeling
as a Bridge Between Disciplines”, In L.
Tesfatsion & K.L. Judd (ed.), Handbook of
Computational Economics, Volume 2: Agent-
Based Computational Economics ed. North-
Holland, Amsterdam (pp. 1565-1584).

Babaoglu, O., Jelasity, M., Montresor,
A., Fetzer, C., Leonardi, S., van Moorsel,
A. & van Steen, M., (ed.). (2005) Self-star
Properties in Complex Information Systems:
Conceptual and Practical Foundations.
(Lecture Notes in Computer Science /
Theoretical Computer Science and General
Issues), Vol. 3460. Springer, Berlin.

Baldwin, C. Y. & Clark, K. B. (2000) Design
Rules, Vol. 1: The Power of Modularity. The
MIT Press, Cambridge, MA.

Baldwin, C. Y. & Clark, K. B. (1997)
Managing in an Age of Modularity. Harvard
Business Review 75, 84–93.

Bar-Yam, Y. (2004) A mathematical theory of
strong emergence using multiscale variety.
Complexity 9 (6), 15-24.

van Beek, T. J., Erden, M. S. & Tomiyama,
T. (2010) Modular design of mechatronic
systems with function modeling.
Mechatronics 20 (8), 850–863.

Belle, R. A. & Kissinger, P. J. (1999) Bridging
the globe: Engineering and construction
solutions for sustainable development in
the twenty-first century. Berkeley-Stanford
CE&M Workshop, Stanford University, CA.

Bentley, P. J. (2002) Digital Biology: How
Nature Is Transforming Our Technology and
Our Lives. Simon & Schuster, New York.

Bishop, D. V. & McArthur, G. M. (2005)
Individual differences in auditory processing
in specific language impairment: a follow-up
study using event-related potentials and
behavioural thresholds, Cortex 41 (3),
327–341.

Bonabeau, E. (2002) Agent-based modeling:
Methods and techniques for simulating
human systems. Proceedings of the National
Academy of Sciences 99 (suppl 3), 7280–
7287.

Bunge, M. A. (1977) Ontology I: The furniture
of the world – Treatise on basic philosophy.
Reidel, Dordrecht.

Bunge, M. A. (1979) Ontology II: A world
of systems – Treatise on basic philosophy.
Reidel, Dordrecht.

Callender, C., (ed.) (2011) The Oxford
Handbook of Philosophy of Time. Oxford
University Press, Oxford.

Carey, M. (1997) Modularity times three. Sea
Power 40 (4), 81–84.

Chandrasekaran, B. & Josephson, J. R.
(2000) Function in device representation.
Engineering with computers 16 (3-4),
162–177.

Chang, T. S. & Ward, A. C. (1995) Design-
in-modularity with conceptual robustness.
In Proceedings of the 1995 ASME Design
Engineering Technical Conferences, 21st
International Conference on Advances
in Design Automation, Boston, MA. The
American Society of Mechanical Engineers,
New York.

Checkland, P. (1988) The case for ‘holon’.
Systemic Practice and Action Research 1 (3)
235–238.

Chen, C.-C. & Crilly, N. (2014) Modularity,
redundancy and degeneracy: Cross-domain
perspectives on key design principles. In 8th
Annual IEEE Systems Conference (SysCon)
(pp. 546–553).

Chen, C.-C. & Crilly, N. (2016) Describing
complex design practices with a cross-
domain framework: learning from Synthetic
Biology and Swarm Robotics. Research in
Engineering Design 27 (3), 291-305.

Chen, C.-C., Nagl, S. & Clack, C. (2009)
Complexity and Emergence in Engineering
Systems. In A. Tolk (ed.), Complex Systems
in Knowledge-based Environments: Theory,
Models and Applications (pp. 99–128).
Springer, Berlin.

Chen, K.-M. & Liu, R.-J. (2005) Interface
strategies in modular product innovation.
Technovation 25 (7), 771–782.

Chen, W. (1987) A Theory of Modules Based
on Second-Order Logic. In Proceedings
of IEEE 1987 Symposium on Logic
Programming, San Francisco, CA (pp. 24–33).

Chisholm, R. (1973) Parts as Essential to
Their Wholes. Review of Metaphysics 26,
581–603.

Cleve, J. (1986) Mereological Essentialism,
Mereological Conjunctivism, and Identity
Through Time. Midwest Studies In Philosophy
11 (1), 141–156.

Cloutier, R., Muller, G., Verma, D.,
Nilchiani, R., Hole, E. & Bone, M. (2010) The
Concept of Reference Architectures. Systems
Engineering 13 (1), 14–27.

Colombo, E. F. & Cascini, G. (2014)
Complexity as information content and
its implications for systems design. In
International Design Conference - DESIGN
2014, Dubrovnik, Croatia (pp. 1249–1260).

Coltheart, M. (1999) Modularity and
cognition. Trends in Cognitive Sciences 3 (3),
115–120.

Crilly, N. (2010) The roles that artefacts play:
technical, social and aesthetic functions.
Design Studies, 31 (4), 311–344.

Crilly, N. (2013) Function propagation
through nested systems. Design Studies 34
(2), 216–242.

Crilly, N. (2015) The proliferation of functions:
Multiple systems playing multiple roles in
multiple supersystems. Artificial Intelligence
for Engineering Design, Analysis and
Manufacturing, 29 (1), 83–92.

Dahmus, J. B., Gonzalez-Zugasti, J.
P. & Otto, K. N. (2001) Modular product
architecture. Design Studies 22 (5), 409–424.

References

From modularity to emergence | 33

Danilovic, M. & Sandkull, B. (2005) The use
of dependence structure matrix and domain
mapping matrix in managing uncertainty
in multiple project situations. International
Journal of Project Management 23 (3),
193–203.

Dauscher, P. & Uthmann, T. (2005) Self-
Organized Modularization in Evolutionary
Algorithms. Evolutionary Computation 13 (3),
303–328.

de Weck, O. L., Roos, D. & Magee, C. L.
(2011) Engineering Systems: Meeting Human
Needs in a Complex Technological World.
The MIT Press, Cambridge, MA.

De Jong, K. A. (2002) Evolutionary
Computation. MIT Press (Bradford Books),
Cambridge, MA.

Deng, Y. (2002) Function and behaviour
representation in conceptual mechanical
design. AI EDAM 16 (5), 343-362.

Dennett, D. C. (1987) The intentional stance.
Cambridge, MA: The MIT Press.

Di Marco, P., Eubanks, C. F. & Ishii, K.
(1994) Compatibility analysis of product
design for recyclability and reuse. Computers
in Engineering 1, 105–112.

Dressler, F. & Akan, O. B. (2010) A survey on
bio-inspired networking. Computer Networks
54 (6), 881–900.

Edelman, G. M. & Gally, J. A. (2001)
Degeneracy and complexity in biological
systems. Proceedings of the National
Academy of Sciences 98 (24), 13763–13768.

Endy, D. (2005) Foundations for engineering
biology. Nature 438 (7067), 449–453.

Erden, M. S., Komoto, H., van Beek, T. J.,
D’Amelio, V., Echavarria, E. & Tomiyama,
T. (2008) A review of function modeling:
Approaches and applications. AI EDAM, 22
(2), 147–169.

Foote, R. (2007) Mathematics and complex
systems. Science 318 (5849), 410–412.

Ford, D. H. & Lerner, R. M. (1992)
Developmental Systems Theory: An
integrative approach. Sage Publications,
Thousand Oaks, CA.

Forrest, S., Balthrop, J., Glickman, M. &
Ackley, D. (2005) Computation in the wild.
In E. Jen (ed.), Robust design: Repertoire of
biological, ecological, and engineering case
studies (pp. 207–230). Oxford University
Press, Oxford.

Fortunato, S. & Castellano, C. (2012)
Community structure in graphs. In R. A.
Meyers (ed.), Computational Complexity:
Theory, Techniques, and Applications (pp.
490–512). Springer, Berlin.

Fricke, E. & Schulz, A. P. (2005) Design
for changeability (DfC): Principles to enable
changes in systems throughout their entire
lifecycle. Systems Engineering 8 (4), 279–295.

Galsworth, G. D. (1994) Smart, Simple
Design: Using Variety Effectiveness to
Reduce Total Cost and Maximize Customer
Selection. Omneo, Essex Junction, VT.

Gao, L. (2000) On Inferring Autonomous
System Relationships in the Internet. In
IEEE/ACM Transactions on Networking (pp.
733–745).

Garud, R. & Kumaraswamy, A. (1993)
Changing competitive dynamics in
network industries: An exploration of Sun
Microsystems’ open systems strategy.
Strategic Management Journal 14 (5),
351–369.

George, G. & Leathrum, J. F. (1985)
Orthogonality of concerns in module closure.
Software: Practice and Experience 15 (2),
119–130.

Gero, J. S. (1990) Design prototypes; a
knowledge representation schema for
design. AI Magazine 11 (4), 26–36.

Gero, J. S. & Mc Neill, T. (1998) An approach
to the analysis of design protocols. Design
Studies 19 (1), 21–61.

Gershenson, J. K., Prasad, G. J. &
Allamneni, S. (1999) Modular Product
Design : A Life-Cycle View. Journal of
Integrated Design and Process Science 3 (4),
13–26.

Gershenson, J. K., Prasad, G. J. and
Zhang, Y. (2003) Product modularity:
Definitions and benefits. Journal of
Engineering Design 14 (3), 295-313.

Giavitto, J.-L. & Michel, O. (2001) MGS:
a rule-based programming language for
complex objects and collections 59 (4),
286–304.

Goldstone, R. L. and Sakamoto, Y. (2003)
The transfer of abstract principles governing
complex adaptive systems. Cognitive
psychology, 46 (4), 414–466.

Goel, A. & Chandrasekaran, B. (1989)
Functional Representation of Designs
and Redesign Problem Solving. Eleventh
International Joint Conference on Artificial
Intelligence (IJCAI-89), Detroit, MI: Morgan
Kaufmann Publishers (pp. 1388–1394).

Goel, A., Rugaber, S. & Vattam, S. (2009)
Structure, behaviour and function of complex
systems: the SBF modelling language.
International Journal of AI in Engineering
Design, Analysis and Manufacturing 23 (1):
23–35.

Goldenfeld, N. & Kadanoff, L. P. (1999)
Simple lessons from complexity. Science 284
(5411), 87–89.

Gu, P., Xue, D. & Nee, A. Y. C. (2009)
Adaptable design: Concepts, methods, and
applications. Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of
Engineering Manufacture 223 (11), 1367–1387.

Gunderson, L. & Holling, C. S. (2001)
Panarchy: Understanding Transformations
in Systems and Nature. Island Press,
Washington, DC.

Gunji, Y.-P. & Kamiura, M. (2004)
Observational heterarchy enhancing active
coupling. Physica D: Nonlinear Phenomena
198 (1-2), 74–105.

Gzara, L., Rieu, D. & Tollenaere, M. (2003)
Product information systems engineering:
an approach for building product models by
reuse of patterns. Robotics and Computer-
Integrated Manufacturing 19 (3), 239–261.

Heydari, B. & Dalili, K. (2014) Emergence of
Modularity in System of Systems: Complex
Networks in Heterogeneous Environments.
IEEE Systems Journal, 1–9.

Heylighen, F. & Joslyn, C. (2001)
Cybernetics and Second-Order Cybernetics.
In R. A. Meyers (ed.), Encyclopedia of Physical
Science and Technology. Academic Press,
New York (pp. 155–169).

Holtta, K. M. M. & Salonen, M. P. (2003)
Comparing three different modularity
methods. In Proceedings of the ASME 2003
International Design Engineering Technical
Conferences and Computers and Information
in Engineering Conference. ASME, Chicago,
Illinois, USA.

Hornberg, J. J., Bruggeman, F. J.,
Westerhoff, H. V. & Lankelma, J. (2006)
Cancer: A Systems Biology disease.
Biosystems 83 (2–3), 81–90.

Houkes, W. & Vermaas, P. E. (2010)
Technical Functions: On the Use and Design
of Artefacts. Springer, Berlin.

Huang, C.-C. & Kusiak, A. (1998) Modularity
in design of products and systems. Systems,
Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on 28 (1), 66–77.

Hubka, V. & Eder, W. E. (1982) Principles of
engineering design. Butterworth Scientific,
London.

Ingram, C., Payne, R., Perry, S., Holt,
J., Hansen, F. O. & Couto, L. D. (2014)
Modelling Patterns for Systems of Systems
Architectures. In Proceedings of the
8th Annual IEEE International Systems
Conference, Ottawa, ON.

Ishii, K., Juengel, C. & Eubanks, C. F. (1995)
Design for product variety: key to product
line structuring. ASME Design Engineering
Division 83 (2), 499–506.

From modularity to emergence | 34

Jiao, J. & Tseng, M. M. (1999a)
Fundamentals of product architecture.
Integrated Manufacturing Systems 11 (7),
469–483.

Jiao, J. & Tseng, M. (1999b) A methodology
of developing product family architecture for
mass customization. Journal of Intelligent
Manufacturing 10 (1), 3–20.

Jiao, J. R., Simpson, T. W. & Siddique,
Z. (2007) Product family design and
platform-based product development: a
state-of-the-art review. Journal of intelligent
Manufacturing 18 (1), 5–29.

Johnson, J. (2007) Multidimensional Events
in Multilevel Systems. In S. Albeverio, D.
Andrey, P. Giordano & A. Vancheri (ed.),The
Dynamics of Complex Urban Systems: An
Interdisciplinary approach (pp. 311–334).
Physica-Verlag, Heidelburg.

Jose, A. & Tollenaere, M. (2005) Modular
and platform methods for product family
design: literature analysis. Journal of
Intelligent Manufacturing 16 (3), 371–390.

Kam, N., Cohen, I. & Harel, D. (2001) The
immune system as a reactive system -
Modelling T cell activation with statecharts.
In Proceedings of the IEEE Symposia on
Human-Centric Computing Languages
and Environments. Symposia on Visual
Languages and Formal Methods (VLFM ‘01),
Stresa, Italy (pp. 15–22).

Kimiaghalam, B., Homaifar, A. & Esterline,
A. (2002) A Statechart Framework for Agent
Roles that Captures Expertise and Learns
Improved Behavior. In Formal Approaches to
Agent-Based Systems, Vol. 2699 (pp. 28–36).
Springer Berlin.

Knight, T. F. (2005) Engineering novel life.
Molecular Systems Biology 1 (1).

Kroes, P., Franssen, M., Poel, I. & Ottens,
M. (2006) Treating socio-technical systems
as engineering systems: some conceptual
problems. Systems Research and Behavioral
Science. 23 (6), 803–814.

Ladyman, J., Lambert, J. and Wisener, K.
(2013) What is a complex system? European
Journal for Philosophy of Science 3 (1), 33-67.

Lancichinetti, A. & Fortunato, S. (2009)
Community detection algorithms: A
comparative analysis. Physical Review E 80
(5), 056117+.

Luzeaux, D., Ruault, J.-R. & Wippler, J.-L.,
(ed.). (2013) Complex Systems and Systems
of Systems Engineering. ISTE/Wiley, London.

Maier, M. W. & Rechtin, E. (2009) The Art
of Systems Architecting. CRC Press, Boca
Raton, FL.

Maier, M. W. (1998) Architecting principles
for systems-of-systems. Systems
Engineering 1 (4), 267–284.

Marshall, R., Leanrey, P. G. & Botterell,
O. P. (1998) Enhanced Product Realisation
through Modular Design: An Example of
Product Process Integration. In Proceedings
of Third Biennial World Conference on
Integrated Design and Process Technology,
Berlin.

Martin, M. & Ishii, K. (2002) Design for
variety: developing standardized and
modularized product platform architectures.
Research in Engineering Design 13 (4),
213–235.

Maturana, H. & Varela, F. J. (1980)
Autopoiesis and cognition: The realization of
the living. Reidel, Boston.

McCulloch, W. S. (1945) A heterarchy of
values determined by the topology of nervous
nets 7 (2), 89–93.

McManus, H. & Hastings, D. (2006) A
framework for understanding uncertainty
and its mitigation and exploitation in complex
systems. IEEE Engineering Management
Review 34 (3), 81-94.

Meadows, D. H. & Wright, D. (2008)
Thinking in systems: A primer. Chelsea Green
Publishing, White River Junction, VT.

Mikkola, J. H. & Gassmann, O. (2003)
Managing Modularity of Product
Architectures: Toward an Integrated
Theory. IEEE Transactions on Engineering
Management 50 (2), 204–218.

Miozzo, M. & Grimshaw, D. (2005)
Modularity and innovation in knowledge-
intensive business services: IT outsourcing in
Germany and the UK. Research Policy 34 (9),
1419–1439.

Mitchell, M. (2009) Complexity: A guided
tour. Oxford University Press.

Nature Editorial (2009) No man is an island
(Editorial). Nature Physics 5, 1.

Newcomb, P. J., Bras, B. & Rosen, D.
W. (1998) Implications of modularity on
product design for the life cycle. Journal of
Mechanical Design 120 (3), 482–490.

Newman, M. E. J. (2006) Modularity
and community structure in networks.
Proceedings of the National Academy of
Sciences 103 (23), 8577–8582.

Newman, M. (2010) Networks: An
Introduction. Oxford University Press,
Oxford.

Ottino, J. M. (2004) Engineering complex
systems. Nature 427 (6973), 399+.

Otto, K. & Sudjianto, A. (2001)
Modularization to support multiple brand
platforms. In Proceedings of the ASME
Design Engineering Technical Conferences,
Pittsburgh, PA.

Otto, K. N. & Wood, K. L. (2001) Product
design: techniques in reverse engineering
and new product development. Prentice Hall,
Upper Saddle River, NJ.

Pahl, G. & Beitz, W. (1996) Developing size
ranges and modular products. In K. Wallace
(ed.) Engineering Design (pp. 405–453).
Springer, Berlin.

Palla, G., Derényi, I., Farkas, I. & Vicsek,
T. (2005) Uncovering the overlapping
community structure of complex networks
in nature and society. Nature 435 (7043),
814–818.

Parnas, D. L. (1972) On the Criteria to be
Used in Decomposing Systems into Modules.
Communications of the ACM 15 (12), 1053-
1058.

Parrish, J. K. & Edelstein-Keshet, L. (1999)
Complexity, pattern, and evolutionary trade-
offs in animal aggregation. Science 284
(5411), 99–101.

Pimmler, T. U. & Eppinger, S. D.
(1994) Integration analysis of product
decompositions. In Proceedings of the
ASME Conference on Design Theory
and Methodology. Minneapolis, MN (pp.
343–351).

Powell, W. W., White, D. R., Koput, K.
W. & Owen-Smith, J. (2005) Network
Dynamics and Field Evolution: The Growth of
Interorganizational Collaboration in the Life
Sciences. American Journal of Sociology 110
(4), 1132–1205.

Preston, B. (2009) Philosophical theories
of artifact function. In A. Meijers (ed.),
Philosophy of technology and engineering
sciences (pp. 213–234). Elsevier, Amsterdam,
The Netherlands.

Rind, D. (1999) Complexity and climate.
Science 284, 105-107.

Ross, A. M. & Rhodes, D. H. (2008) Using
Natural Value-Centric Time Scales for
Conceptualizing System Timelines through
Epoch-Era Analysis. INCOSE International
Symposium. Utrecht, The Netherlands.

Ross A. M., Rhodes D. H. & Hastings
D. E. (2008) Defining changeability:
Reconciling flexibility, adaptability, scalability,
modifiability, and robustness for maintaining
system lifecycle value. Systems Engineering
11 (3): 246–262.

Roth, C. & Cointet, J.-P. (2010) Social and
semantic coevolution in knowledge networks.
Social Networks 32 (1), 16–29.

Ryan, A. J. (2007) Emergence is coupled to
scope, not level. Complex 13 (2), 67–77.

Ryan, E. T., Jacques, D. R. & Colombi, J. M.
(2013) An ontological framework for clarifying
flexibility-related terminology via literature
survey. Systems Engineering 16(1), 99–110.

From modularity to emergence | 35

Sanchez, R. (2000) Modular architectures,
knowledge assets and organisational
learning: new management processes for
product creation. International Journal of
Technology Management 19 (6), 610–629.

Sargut, G. and McGrath, R. (2011) Learning
to Live with Complexity. Harvard Business
Review 89 (September), 68-76.

Sarkar, S., Dong, A., Henderson, J.
A. & Robinson, P. A. (2013) Spectral
characterization of hierarchical modularity in
product architectures. Journal of Mechanical
Design 136 (1), 011006+.

Sasai, K. & Gunji, Y.-P. (2008) Heterarchy in
biological systems: A logic-based dynamical
model of abstract biological network derived
from time-state-scale re-entrant form.
Biosystems 92 (2), 182–188.

Schlosser, G. & Wagner, G. P. (2004)
Modularity in Development and Evolution.
University Of Chicago Press.

Schoettl, F. & Lindemann, U. (2014)
Design for System Lifecycle Properties – A
Generic Approach for Modularizing Systems.
Procedia Computer Science 28, 682–691.

Simon, H. A. (1962) The architecture of
complexity. Proceedings of the American
Philosophical Society 106 (6) 467–482.

Skyttner, L. (2005) General Systems Theory:
Problems, Perspectives, Practice. World
Scientific, London.

Smedt, K., Horacek, H. & Zock, M.
(1996) Architectures for natural language
generation: Problems and perspectives.
In G. Adorni & M. Zock (ed.), Trends in
Natural Language Generation: An Artificial
Intelligence Perspective (pp. 17–46). Springer,
Berlin.

Software Engineering Standards
Committee (2000) IEEE recommended
practice for architectural description of
software-intensive systems (Technical Report
IEEE Std 1471-2000). IEEE Computer Society.

Sosale, S., Hashemian, M. & Gu, P. (1997)
Product modularization for reuse and
recycling, Concurrent Product Design and
Environmentally Conscious Manufacturing,
Proceedings of the 1997 ASME International
Mechanical Engineering Congress and
Exposition, Dallas, Texas, pp.195–206.

Stamatopoulou, I., Kefalas, P. & Gheorghe,
M. (2007) Modelling the dynamic structure of
biological state-based systems. Biosystems
87 (2-3), 142–149.

Stone, R. B., Wood, K. L. & Crawford, R.
H. (2000) A heuristic method for identifying
modules for product architectures. Design
Studies 21 (1), 5–31.

Tait, W. W. (1967) Intensional interpretations
of functionals of finite type. Journal of
Symbolic Logic 32 (2), 198–212.

Tomiyama, T., Umeda, Y., Ishii, M.,
Yoshioka, M. & Kirayama, T. (1993) A CAD
for functional design. Annals of the CIRP 42
(1), 143–146.

Tononi, G., Sporns, O. & Edelman,
G. M. (1999) Measures of degeneracy
and redundancy in biological networks.
Proceedings of the National Academy of
Sciences 96 (6), 3257–3262.

Ulrich, K. (1995) The role of product
architecture in the manufacturing firm.
Research Policy 24 (3), 419–440.

Ulrich, K. T. & Eppinger, S. D. (1995)
Product design and development. McGraw-
Hill, New York, NY.

Ulrich, K. & Tung, K. (1991) Fundamentals
of Product Modularity. In Proceedings of
the 1991 ASME Winter Annual Meeting
Symposium on Issues in Design Manufacture/
Integration, Vol. 39 (pp. 73–79).

Umeda, Y. & Tomiyama, T. (1997) Functional
reasoning in design. IEEE Expert 12 (2),
42–48.

Vattam, S. S., Goel, A. K., Rugaber, S.,
Hmelo-Silver, C. E., Jordan, R. & Gray,
S. (2011) Understanding Complex Natural
Systems by Articulating Structure-Behaviour-
Function Models. Journal of Educational
Technology and Society 14 (1).

Veeke, H. P. M., Ottjes, J. A. & Lodewijks,
G. (2008) The Delft Systems Approach:
Analysis and Design of Industrial Systems.
Springer, London, UK.

Vermaas, P. E. (2013) On the formal
impossibility of analysing subfunctions as
parts of functions in design methodology.
Research in Engineering Design 24 (1), 19–32.

Vermaas, P. E. & Dorst, K. (2007) On
the conceptual framework of John Gero’s
FBS-model and the prescriptive aims of
design methodology. Design Studies 28 (2),
133–157.

Walz, G. A. (1980) Design tactics for
optimal modularity. In Proceedings of IEEE
Autotestcon 1980 (pp. 281–284), Washington,
DC.

Wand, Y. and Weber, R. (1990) Mario
Bunge’s ontology as a formal foundation
for information systems concepts, In P.
Weingartner & G.J.W. Dorn (eds.), Studies on
Mario Bunge’s Treatise, Rodopi, Atlanta, 1990
(pp. 79–107).

Weng, G., Bhalla, U. S. & Iyengar, R. (1999)
Complexity in biological signaling systems.
Science 284 (5411), 92–96.

Werner, B. T. (1999) Complexity in natural
landform patterns. Science 284 (5411),
102–104.

West-Eberhard, M. J. (2003) Developmental
Plasticity and Evolution. Oxford University
Press, Oxford.

Weyns, D. & Holvoet, T. A. (2002) A Colored
Petri Net for a Multi-Agent Application. In
Proceedings of the Second Workshop on
Modeling of Objects, Components, and
Agents (pp. 121–140), Aaarhaus, Denmark.

Whitacre, J. (2010) Degeneracy: a link
between evolvability, robustness and
complexity in biological systems. Theoretical
Biology and Medical Modelling 7 (1), 6+.

Whitehead, A. N. (1919) An Enquiry
concerning the Principles of Natural
Knowledge. Cambridge University Press,
Cambridge, UK.

Whitesides, G. M. & Ismagilov, R. F. (1999)
Complexity in chemistry. Science 284 (5411),
89–92.

Winsor, J. & MacCallum, K. (1994) A
review of functionality modelling in design.
The Knowledge Engineering Review 9 (2),
163–199.

Yamamoto, L., Schreckling, D. & Meyer,
T. (2007) Self-replicating and self-modifying
programs in fraglets. In Proceedings of
the Second International Conference on
Bio-inspired Information; Bio-Inspired
Models of Network, Information and
Computing Systems (Bionetics 2007) (pp.
159–167). IEEE, Budapest.

Zalta, E. (1983) Abstract Objects: An
Introduction to Axiomatic Metaphysics.
Springer, Berlin.

Zamirowski, E. & Otto, K. (1999) Identifying
product portfolio architecture modularity
using function and variety heuristics. In
Proceedings of the 1999 ASME Design
Enginee ring Technical Conference. ASME,
Las Vegas, NV.

Zemach, E. (1992) Types: Essays in
Metaphysics. Brill, Leiden.

